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Abstract
Background  Recent studies have suggested that gestational diabetes mellitus (GDM) can accelerate cellular aging in 
multiple cell types in offspring, but its impact on immune senescence remains uncertain. Our prior study reveals GDM 
increased the secretion of inflammatory factors by monocytes in offspring. This study discovered the transcriptome 
characteristics of aging monocytes at the single-cell level and explore the impact of GDM on the progression of 
monocyte aging in offspring.

Method  Single-cell sequencing data from 56 healthy individuals (aged 0-100 years), comprising self-measured 
samples (n = 6) and publicly available datasets from the Gene Expression Omnibus (GEO, n = 50), were analyzed to 
characterize monocyte senescence. Linear mixed-effects modeling was used to screen for age-related genes. A 
random forest model was created to predict immune age in monocytes, allowing for quantitative assessment of 
aging.

Results  We detected an increase in the number of inflammatory monocytes expressing IL1B and CXCL8 with age. 
Two age-related gene expression patterns were identified in monocytes. Analysis of offspring monocytes from 
mothers with GDM suggested that exposure to a GDM environment in the womb may lead to increased expression 
of aging-related genes, a hindered cell cycle, and increased immune age. The immune age of monocytes at birth is 
significantly linked to maternal weight gain, high fasting blood glucose levels, and cord blood C-peptide levels during 
pregnancy.

Conclusions  Exposure to GDM during pregnancy accelerates aging in offspring immune cells. Monitoring maternal 
weight and blood sugar during GDM can help prevent negative effects on the offspring immune system.
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Introduction
Gestational diabetes mellitus (GDM) is a common meta-
bolic disorder during pregnancy that increases the like-
lihood of enduring health implications in offspring [1], 
such as diabetes, obesity, and cardiovascular diseases [2–
8]. Recent research has indicated that GDM can expedite 
cellular aging in various types of cells in offspring, includ-
ing muscle cells, endothelial cells, and mesenchymal stem 
cells [9–11]. Nevertheless, there is a dearth of studies 
exploring the potential influence of GDM on immunose-
nescence in offspring. Previous research has indicated 
elevated levels of inflammatory markers in the umbilical 
cord serum of GDM offspring, as well as shortened telo-
meres in leukocytes [12].

Cellular senescence involves cell cycle arrest [13], 
changes in cell morphology and metabolism, short-
ened telomeres, and chromatin remodeling [14]. These 
changes affect immune cell composition and function, 
leading to increased expression of senescence mark-
ers and a senescence-associated secretory phenotype 
(SASP) [15]. Our prior investigation utilizing single-cell 
sequencing techniques substantiated the influence of 
GDM on the increased secretion of inflammatory fac-
tors by monocytes in offspring, resulting in alterations 
in the monocyte inflammatory phenotype and immune 
function [16]. Monocytes play a key role in the immune 
response and inflammation [17], with changes in their 
proportions in elderly individuals linked to increased 
rates of chronic inflammation and age-related diseases 
such as atherosclerosis [18–21]. We hypothesized that 
the heightened inflammation observed in monocytes of 
offspring born to mothers with GDM may be attributed 
to the induction of immunosenescence by the GDM envi-
ronment, potentially resulting in adverse long-term con-
sequences. However, it is not clear whether GDM can 
accelerate monocyte senescence in offspring.

Although the characteristics of aging lymphocytes are 
known [22], those of aging monocytes are still unclear. 
Machine learning techniques are used to estimate cell 
age and develop predictive models of immune cell aging 
based on environmental factors [23–27]. In recent stud-
ies, there has been a growing trend in utilizing single-cell 
sequencing data and multiomics data to construct pre-
dictive models of immune cell aging [28, 29]. Neverthe-
less, the current predictive training samples for immune 
age prediction are primarily from adults and may not 
accurately predict immune cell age in children or infants. 
Therefore, there is a need for more precise predictive 
models to assess the effects of the GDM environment on 
offspring immune age.

This study will discover single-cell transcriptome char-
acteristics of monocytes from various age cohorts and 
establish a predictive model of monocyte immune age. 
Furthermore, we will explore the impact of maternal 

exposure to GDM environments during fetal develop-
ment on the aging process of umbilical cord monocytes.

Materials and methods
Study population
The study cohort comprised 3 healthy mothers and 4 
patients with GDM from whom cord blood samples were 
obtained between October and December 2020 at the 
Second Xiangya Hospital of Central South University. 
Additionally, peripheral blood samples were collected 
from 3 healthy children aged 0–10 years for single-cell 
sequencing analysis. The corresponding sample informa-
tion has been reported previously [16, 30]. Other sam-
ples were sourced from four publicly accessible datasets 
in the Gene Expression Omnibus (GEO) database: (1) 
GSE158055 [31] containing single-cell sequencing data 
of PBMCs from 20 healthy controls; (2) GSE157007 [32] 
containing single-cell sequencing data of PBMCs from 
9 healthy adults; (3) GSE135779 [33] containing single-
cell sequencing data of PBMCs from 16 healthy subjects; 
and (4) GSE206283 [34] containing single-cell sequenc-
ing data of PBMCs from healthy controls and COVID-19 
patients upon their first hospital admission.

Definition of individuals without health conditions: 
For the healthy controls recruited: Participants were sys-
tematically enrolled through advertisements placed at 
certified preschool education institutions and tertiary 
medical centers. Each volunteer underwent comprehen-
sive medical history evaluation with specific exclusion 
of: (1) diabetes mellitus, (2) active infections, (3) autoim-
mune disorders, (4) hepatic or renal dysfunction, and (5) 
steroid hormone use within 3 months. Database-derived 
subjects: Health status was verified by referencing origi-
nal publications.

The research conducted in this study received approval 
from the Research Ethics Committee of the Second 
Xiangya Hospital of Central South University (Approval 
No. SQ2016YFSF110035) and adhered to the principles 
outlined in the Helsinki Declaration. Prior to participa-
tion, all individuals involved in the experiment provided 
written informed consent. Details of the self-test data 
used in this research were provided in a previous study 
[16]. Supplementary Table 1 provides basic information 
for all datasets within this chapter, and Supplementary 
Table 2 lists the age and gender of all participants.

Data processing and quality control for single-cell RNA 
sequencing
The gene barcode matrix from all the samples was com-
bined using the R package Seurat V3. Sequencing infor-
mation for each sample can be found in our previous 
reports [16]. For quality control, we rigorously selected 
high-quality cells based on the following criteria: (1) a 
minimum threshold of 200 and maximum threshold of 
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4,500 unique genes detected per cell (nFeature_RNA); (2) 
mitochondrial gene content not exceeding 15% of total 
counts.

Dimension reduction and major cell type annotation
Highly variable genes were identified using the Find-
VariableFeatures function (default parameters). The 
RunPCA function in Seurat V3 was used to perform 
principal component analysis (PCA) on the top 2000 
variable genes. Batch effects were removed using the R 
package Harmony version 1.0 based on the top 50 PCA 
components identified. The first 50 principal components 
were then used for cell clustering and uniform manifold 
approximation and projection (UMAP) [35] dimensional 
reduction. Cluster marker genes were recognized using 
the FindAllMarkers function, and clusters were manually 
annotated using known cell-type marker genes [36]. The 
cell cycle status of each cell was predicted using the Cell-
CycleScoring function, and the cell cycle gene set used 
was the cc.genes.updated.2019 gene set in Seurat.

Monocytes, granulocytes, T cells, B cells, and other 
immune cells were identified from mononuclear cells 
for further subclustering. Following isolation, PCA and 
clustering were performed in the manner described in 
the dimension reduction and major cell type annotation 
section.

Detection of differentially expressed genes and functional 
enrichment analysis
Differential gene expression (DEG) analysis was carried 
out in Seurat using the FindMarkers function with the 
Wilcoxon test, and p values were adjusted by using Bon-
ferroni correction. DEGs were ranked by average log2 
(fold change) after filtering with a minimum|log2(fold 
change)| of 0.585 and a maximum adjusted p value of 
0.05. GSEA was performed using OmicStudio tools, 
which can be found at https://www.omicstudio.cn/. ​P​e​a​r​
s​o​n correlation was utilized to assess the similarity of cell 
groups to identify similar functional clusters.

AUCell analysis
To determine whether the activation of certain pathways 
differs between cells, the AUCell R package [37] was uti-
lized to calculate the degree of pathway activation for 
each cell using gene set enrichment analysis. The area 
under the curve (AUC) of gene expression in the selected 
pathway was calculated using a specific gene list down-
loaded from the GSEA database [38]. Cells that expressed 
more genes within the gene set had relatively high AUC 
values. Therefore, gene expression rankings for each cell 
were generated based on the AUC. The “AUCell_explor-
eThresholds” function was utilized to determine the 
threshold for identifying gene set active cells. To visualize 
the active clusters, the AUC of each cell was mapped to 

the UMAP embedding using the ggplot2 R package (ver-
sion 3.3.5) [39].

Cytotrace
To predict the relative differentiation state of cells, we 
performed CytoTRACE (v0.1.0) analysis [40] based on 
the monocyte subclustering data.

Functional enrichment analysis
GO enrichment analysis was performed using DAVID 
bioinformatics tools, which can be found at ​h​t​t​p​s​:​/​/​d​a​v​i​
d​.​n​c​i​f​c​r​f​.​g​o​v​/​​​​​.​​

Linear fitting
To acquire continuous change curves depicting the pre-
dicted age for individual monocyte clusters and assess 
the predictive efficiency in relation to the number of 
variables, linear fitting graphs were created utilizing the 
heatmap function on the web-based data analysis and 
visualization platform ​h​t​t​p​​s​:​/​​/​w​w​w​​.​b​​i​o​i​​n​f​o​​r​m​a​t​​i​c​​s​.​c​o​m​.​
c​n. The fitting process employed a cubic fitting method.

Correlation analysis
Pearson correlation analyses will be performed utilizing 
SPSS software in this research. The correlation plots were 
produced using a web-based data analysis and visualiza-
tion platform ​h​t​t​p​​s​:​/​​/​w​w​w​​.​b​​i​o​i​​n​f​o​​r​m​a​t​​i​c​​s​.​c​o​m​.​c​n.

Changes in gene expression with age
Mixed-effect linear regression (MELR) model [41], utiliz-
ing the R package lme4, was employed to detect differen-
tial gene expression patterns in monocytes as they aged. 
This modeling strategy entails conducting linear regres-
sion analyses with both fixed-effect and random-effect 
terms. The fixed-effect terms evaluate the impact of age 
on gene expression levels, whereas the random-effect 
terms account for variability between different experi-
mental batches. Specifically, cells were grouped accord-
ing to their dataset source to isolate age-related gene 
expression changes within each dataset. In our model, 
the age of each donor serves as the numeric independent 
variable, while the log2-normalized UMI counts for each 
gene in each cell are utilized as the dependent variable, as 
demonstrated in the equation.

UMI_Expression ~ Age + Gender+ (1∣Group).
In this model, age is treated as a fixed-effect factor, 

while gender is incorporated as a covariate to adjust for 
gender-related variances. The term (1|group) denotes a 
random-effect factor, with individual cells within each 
dataset designated as a group to mitigate batch-related 
random effects. Genes exhibiting fixed-effect ampli-
tudes equal to or exceeding 0.002 and a false discovery 
rate (FDR) below 1% were deemed to be statistically sig-
nificant in terms of fixed-effect amplitude alterations. 

https://www.omicstudio.cn/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.bioinformatics.com.cn
https://www.bioinformatics.com.cn
https://www.bioinformatics.com.cn
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To validate our approach, we tried to remove the batch 
effect of gene expression using canonical correlation 
analysis (CCA) before MELR. Reassuringly, nearly 90% of 
reported age-associated genes appeared in both methods, 
confirming the reliability of our MELR-based correction.

Gene expression pattern analysis
Linear regression analysis was employed to identify the 
significant upregulation or downregulation of genes with 
distinct age-related gene expression patterns within indi-
vidual clusters. The AverageExpression function in Seurat 
was utilized to determine the average gene expression 
level, while the raw UMI count matrix was employed to 
identify cells expressing the genes of interest. The Pear-
son correlation analysis method was utilized to evaluate 
the relationship between gene expression features and 
age, with a significance level of p < 0.05 set as the thresh-
old for identifying age-related alterations. Genes exhibit-
ing significant changes in expression patterns based on 
Pearson correlation analysis at p < 0.05 were categorized 
as showing percentage changes, expression changes, or 
a combination of both. Genes that did not demonstrate 
alterations in at least 5% of measurements were excluded 
from further analysis.

Cell age estimation
This study utilized a linear regression approach to 
develop a predictive model for estimating cell age by 
incorporating a machine learning technique centered 
on a random forest model or a Bayesian model. The 
log2-normalized gene expression values were utilized 
as predictive variables for determining cell age. Tenfold 
cross-validation was performed, with 90% of the cells 
randomly selected for training and the remaining 10% for 
testing in each fold. Each iteration of the tenfold cross-
validation procedure was replicated ten times, resulting 
in a total of 100 repetitions. Models were evaluated based 
on performance (mean absolute error (MAE) and consis-
tency. Supplementary Table 3 lists the age and gender of 
all participants utilized to develop the model.

Results
Older individuals and offspring of mothers with 
gestational diabetes had increased activity in established 
aging-related genes in their monocytes
The single-cell sequencing data of immune cells from all 
participants were analyzed, leading to the identification 
of CD4 + T cells, CD8 + T cells, B cells, NK cells, mono-
cytes, granulocytes, and DCs based on established mark-
ers (Fig.  1a-b). Curves were generated to illustrate the 
variations in cell proportions with age for each cell type 
(Fig.  1c). Data from 56 healthy individuals aged 0-100 
years were used to demonstrate the characteristics of 
immunosenescence. Notably, monocyte proportions 

fluctuated throughout the lifespan, reaching a peak in 
cord blood and subsequently declining in children and 
elderly individuals. In contrast to other cell types, the 
trajectory of monocyte quantity with age appeared to 
be inconsistent across different life stages. The upregu-
lation of the established aging-related genes CDKN1A 
and CDKN2A [42] was correlated with advancing age 
in immune cells (Figure S1 a-f ), which was particularly 
evident in monocytes (Fig. 1d). Moreover, the increased 
expression of CDKN1A and CDKN2A in the GDM group 
was predominantly localized in monocytes (Fig.  1e). 
Thus, it is postulated that monocyte aging represents the 
primary phenotype of immune aging induced by GDM. 
However, upon further stratification of the sample by 
age, the previously observed linear relationships between 
CDKN1A and CDKN2A expression and age exhib-
ited a decreasing trend (Fig.  1f ). Moreover, the analysis 
of cell cycle progression in monocytes of varying ages 
demonstrated a progressive decline in G2/S phase cells 
with increasing age, and the most obvious change in the 
GDM group was predominantly localized in monocytes 
(Fig. 1g). However, the correlation between cell cycle pro-
gression and age was not strong (Figure S2 a-f ), suggest-
ing that traditional markers of aging may not accurately 
reflect the immunological age of monocytes.

Variability in transcriptional characteristics among 
monocyte subclusters
Seurat was utilized to partition monocytes into 8 dis-
tinct clusters based on their gene expression similarities 
(Fig.  2a). c6 was identified as a nonclassical monocyte, 
c9 was identified as an intermediate monocyte, and the 
remaining 7 clusters were identified as classical mono-
cytes (Fig.  2b-c). c1 exhibited high expression levels in 
antigen processing and presentation pathways, while c2 
and c4 showed upregulation in lipogenesis pathways. c3 
demonstrated high expression levels in pathways asso-
ciated with cell proliferation and differentiation. The 
biosynthetic pathway of c5 was upregulated, while c7 
exhibited high expression of the IFN-γ response pathway 
(Fig. 2d). c8 is characterized by elevated expression of the 
inflammatory cytokine genes IL1B and CXCL8 (Fig. 2b), 
heightened activation of inflammation- and apoptosis-
related pathways (Fig.  2d), and increased activity of the 
IL18 signaling pathway (Fig. 2e). CytoTrace revealed that 
c3 exhibited the least degree of differentiation, whereas 
c8, characterized by elevated levels of inflammatory 
cytokines, displayed the highest level of differentiation 
(Fig. 2f-g).

Alterations in monocyte composition and functionality as 
individuals age
We analyzed how age affects monocyte clusters by 
examining the relationships between age and the 
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Fig. 1 (See legend on next page.)
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proportions of different clusters and their gene expres-
sion profiles using linear regression (Fig.  3a). Certain 
monocyte clusters remain stable in proportion through-
out life, while others show variations with age. Less dif-
ferentiated clusters c3 and c5 are more prevalent in early 
life and decrease with age, while clusters c4, c1, and c2 
peak between ages 20 and 30 years before declining. 
The c8 monocyte cluster increases with age, becom-
ing the most common in individuals over 70 years of 
age. Changes in the monocyte transcriptome with age 
were examined using the MELR analysis method. Genes 
with significant expression level changes were identi-
fied within specific clusters, with age as a fixed effect, 
sex as a covariate, and dataset source as a random effect. 
Genes displaying a fixed-effect amplitude of ≥ 0.002 and 
a false discovery rate (FDR) of < 0.01 were categorized as 
significantly age-related genes. These genes were identi-
fied as monocyte age-related genes. The expression of 
333 genes, including FOSL1, TMP1, CXCL16, NFKB2, 
and MAP2K3, increased with age. The expression of 
1092 genes, including PHF20, NASP, MT-ND3, CAMP, 
and GPSM2, decreased with age. Functional enrichment 
analysis revealed that these genes were mainly enriched 
in ferroptosis, the VEGFA-VEGFR2 and IL-18 signaling 
pathways, and autophagy (Fig.  3b). On the other hand, 
genes that were less active as individuals aged were 
mainly involved in the cell cycle, cell division, and protein 
transport pathways (Figure S3). Within each monocyte 
cluster, there were differences in the expression levels of 
these age-related genes, with most genes showing con-
sistent trends but varying degrees of change (Fig.  3c). 
The upregulation of age-positively correlated genes in c8 
exhibited the most notable increase with age, whereas the 
downregulation of age-negatively correlated genes in c3 
and c5 showed the most pronounced decrease. This sug-
gests significant alterations in the quantity and function-
ality of these monocyte types during aging. Our research 
revealed the transcriptional characteristics of these genes 
and potential shifts in their functional properties.

The gene expression of individual monocytes exhibits two 
distinct patterns of changes in relation to age
After identifying age-related gene changes, we analyzed 
gene expression in individual monocytes, as previously 
described [29]. We identified two patterns of age-related 
gene expression changes: changes in the percentage 

of positive cells and changes in gene expression levels 
within individual cells. We then quantified the raw UMI 
values of age-related genes in each cell and calculated 
the percentage of cells expressing each gene in every 
sample. We analyzed gene expression changes with age 
using linear fitting and Pearson correlation, selecting 
p < 0.05 for significance. Among the 333 upregulated 
age-related genes, 191 had increased positive cell per-
centage (IPCP), and 244 had increased expression levels 
in individual cells (IEIC). A total of 181 genes displayed 
both patterns, while 79 did not (Fig. 4a). To understand 
how age affects gene expression, we analyzed genes with 
different patterns of change. We found that as people 
age, the expression of the IPCP genes increases, and the 
cAMP response, inflammatory response, and glycoly-
sis decrease (Fig. 4b). On the other hand, IEIC genes are 
mainly involved in cell death, glycolysis, and the response 
to gamma interferon (Fig. 4c). Among the downregulated 
age-related genes, 833 had a decreased positive cell per-
centage (DPCP), and 832 had decreased expression levels 
in individual cells (DEIC). 775 genes exhibited both pat-
terns, while 201 did not (Fig. 4d). Functional enrichment 
showed that with age, the DPCP and DEIC genes were 
mainly enriched in protein degradation metabolism and 
phosphorylation-related pathways (Fig.  4e-f ). It can be 
inferred from the data that gene expression in monocytes 
changes with age, exhibiting two distinct patterns that 
may be associated with the adaptation of monocytes to 
varying age-related physiological conditions and immune 
requirements.

Construction of the immunological age prediction model 
for monocytes spanning the age range of 0 to 100 years
We predicted the age of monocytes by analyzing gene 
expression patterns using random forest and Bayesian 
methods and assessed the efficacy of the model through 
10-fold cross-validation. The sample information used 
to build the model is shown in supplementary Table 3. 
Our analysis showed that the random forest algorithm 
was better than the Bayesian method at predicting age-
related gene expression patterns. The final model had 
a MAE of 8.49 ± 0.06 and an R2 of 0.76 for age predic-
tion (Fig. 5a), while the Bayesian model had an MAE of 
14.64 ± 0.12 and an R2 of 0.45. Consequently, the ran-
dom forest model developed for forecasting the immu-
nological age of monocytes, denoted as “mono_age”, 

(See figure on previous page.)
Fig. 1  The impact of age and adverse intrauterine conditions on monocytes as determined by recognized indicators of cellular senescence (a) UMAP 
visualization displaying the clusters of all immune cells (b) Dotplot illustrating the marker genes of each immune cell (c) Scatter plots were generated 
to depict the relationship between the proportion of immune cells in healthy individuals and age, and linear regression was used for curve fittingn (d, 
f) The scatter plots illustrate the mean expression levels of CDKN1A and CDKN2A in monocytes of individuals without health conditions across various 
age groups (d) or at different ages (f). Linear regression was used to model the data, and the Pearson correlation coefficient (R2) was used to quantify 
the relationship between the expression of aging-related genes and chronological age (e) The feature plot analysis illustrates the differential expression 
patterns of established age-related genes in cord blood immune cells of offspring born to mothers with gestational diabetes mellitus (GDM) compared 
to those born to healthy controls (g) Cell cycle prediction results showing the distribution of cells in the G1, G2/M, and S phases
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has a distinct advantage. Notably, the predicted age of monocytes displayed variability around the actual age 

Fig. 2  Transcriptional characteristics of subclusters present within monocytes (a) UMAP plot showing the clusters of all monocytes (b) Dot plot showing 
the characteristic genes of each monocyte cluster (c) Violin diagram showing the expression of CD14 and FCGR3A (CD16) in each monocyte cluster (d) 
Heatmaps showing pathway enrichment results for each monocyte cluster. The colors represent the AUCell score (e) KEGG enrichment demonstrated 
the upregulation of the IL8 signaling pathway in c8 (f) The ability of CytoTrace to infer the level of cell differentiation is demonstrated through a boxplot, 
which illustrates the anticipated degree of differentiation within each group of monocytes (g) Left: CytoTrace was utilized on the left to forecast the cell 
cycle distribution, with colors indicating the anticipated level of differentiation. The UMAP diagram was used to visualize the anticipated cellular localiza-
tion based on the differentiation level. Right: The diagram illustrates the distribution of distinct clusters within the UMAP diagram
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of the sample. A recent study highlighted immune aging 
in monocytes of individuals with COVID-19, reveal-
ing a correlation with disease severity [43, 44]. We used 
single-cell sequencing data to predict the immunological 
age of blood monocytes in COVID-19 patients (Fig. 5b-
e). Our random forest model showed a significant dif-
ference in the predicted monocyte age between healthy 

controls and COVID-19 patients, with patients with 
severe COVID-19 having a greater predicted age than 
patients with mild COVID-19. Overall, our model effec-
tively captured variations in monocyte immunological 
age across different levels of COVID-19 severity.

Fig. 3  Changes in monocyte composition and gene expression with age (a) Scatter plots showing the change in the percentage of mononuclear cells in 
healthy people at each age. Linear regression was used for fitting (b) The bubble map shows the pathway enrichment results of upregulated genes with 
age (c) Heatmaps showing age-dependent changes in the expression of upregulated (top half ) and downregulated (bottom half ) genes in each cluster
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GDM leads to an elevated immunological age of umbilical 
cord monocytes in offspring
GDM can lead to lasting complications in offspring, 
including changes in their immune cells. This study 
aimed to further explore how GDM affects the devel-
opment of monocytes in newborns. Our initial analysis 
focused on examining alterations in traditional aging-
related genes within the GDM cohort, revealing elevated 
expression levels of CDKN1A and CDKN2A in cord 
blood monocytes from individuals with GDM compared 
to those from healthy controls (Fig.  6a-b). Subsequent 
cell cycle analysis indicated a greater proportion of cells 
in the G1 phase in the GDM group than in the control 
group, suggesting a diminished proliferative capacity 
(Fig. 6c-d). Additionally, alterations in age-related genes 
within the GDM group were assessed. Out of the 216 
age-upregulated genes present in cord blood, 169 genes 
exhibited upregulation in the GDM group (Fig. 6e). Con-
versely, among the 1091 age-downregulated genes in 
cord blood, 483 genes were downregulated in the GDM 
group (Fig. 6f ). This finding indicates a potential substan-
tial influence of GDM on age-upregulated genes, lead-
ing to a subsequent investigation into the distribution of 
genes exhibiting varying degrees of upregulation. Among 
the 169 age-upregulated genes upregulated in the GDM 
group, 81 genes exhibited over 25% increased expres-
sion relative to controls, with 43 genes exhibited over 
50% increased (Fig.  6g). PPI analysis of these 43 genes 
revealed enrichment of genes involved in the glucocorti-
coid receptor pathway, the IL-18 signaling pathway, and 
the regulation of apoptotic processes (Fig.  6h). Subse-
quently, we used the random forest model to predict the 
mono_age of cord blood monocytes from GDM donors 
compared to healthy controls (Fig. 6i). Despite a smaller 
sample size, we found that the average mono_age of 
cord blood monocytes from the GDM group was greater 
than that of the healthy control group, equivalent to an 
increase of approximately 2 years in actual age (p = 0.057). 
We found that the immune age of cord blood monocytes 
was negatively correlated with maternal weight gain dur-
ing pregnancy and free fatty acid content in cord blood 
(Fig.  6j, Figure S4 a) but was positively correlated with 
the highest fasting blood glucose levels during pregnancy 
and cord blood C-peptide levels (Fig.  6k, Figure S4 b). 
This suggests that GDM may impact the immune age of 
offspring monocytes through abnormal glucose and lipid 
metabolism.

Discussion
Our research presents the initial single-cell immune atlas 
of monocytes spanning the age range from 0 to 100 years, 
elucidating the cluster distribution and gene expression 
profiles of monocytes throughout the lifespan. Addition-
ally, we developed the first model for estimating the age 

of monocytes and observed aging-related traits and ele-
vated immune age predictions in cord blood monocytes 
following GDM exposure, indicating a potential link 
between GDM exposure in utero and premature aging of 
offspring monocytes.

Our past research showed that offspring monocytes 
from GDM pregnancies produce more inflammatory fac-
tors, such as IL1B and CXCL8 [16]. This suggests that 
GDM may affect the aging of monocytes. Previous stud-
ies have also shown accelerated aging of muscle cells, 
endothelial cells, and mesenchymal stem cells in the off-
spring of GDM pregnancies [9–11], as well as shorter 
telomeres in leukocytes [12]. This study suggested that 
exposure to abnormal glucose tolerance in the intrauter-
ine environment during fetal development may expedite 
age-related transcriptional alterations in monocytes, 
resulting in the premature emergence of a proinflam-
matory phenotype. Consequently, timely intervention 
to prevent age-related diseases in offspring monocytes 
exposed to GDM is imperative.

Previous research has shown an increase in intermedi-
ate and nonclassical monocytes in older populations [45]. 
Our study confirmed this trend in the 70- to 80-year-old 
group compared to the 30- to 60-year-old group. How-
ever, we also observed elevated levels in the 10–30 age 
group, which decreased after 70 years, possibly due to 
our study’s wider age range and detailed breakdown. A 
specific subset of classical monocytes with high IL1B and 
CXCL8 levels increased with age, particularly in individ-
uals over 70 years of age. In summary, our study revealed 
a new type of aging in monocytes, with increased num-
bers of IL1B + CXCL8 + classical monocytes in people 
older than 70 years. This subset showed increased inflam-
mation-related pathways, similar to the SASP.

MELR analysis revealed age-related gene expression 
changes in monocytes, with two patterns observed as age 
increased: changes in expression levels within cells or in 
the number of cells expressing the gene. These finding 
parallels previous findings in CD8 + T cells [29], which we 
simplified into two patterns for clarity. Due to the varia-
tion in gene expression patterns with age, we used a ran-
dom forest method to predict monocyte immune age in 
healthy individuals. Previous studies have shown that 
monocytes in severely ill COVID-19 patients age faster 
than those in mildly ill patients and healthy individuals 
[43, 44]. Our results support this finding, highlighting 
the accuracy of the random forest model in predicting 
immune age.

Our study is subject to several limitations. First, the 
samples collected from various age groups were obtained 
from distinct individuals, potentially leading to variations 
in immune cell status due to genetic and environmental 
influences. Consequently, longitudinal sampling of the 
same participants in the future is essential to corroborate 
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Fig. 4 (See legend on next page.)
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our results. Second, despite efforts to mitigate batch 
effects through removal and normalization analyses of 
publicly available datasets, the presence of batch discrep-
ancies cannot be entirely discounted. Finally, while the 
age of our GDM patient cohort was adequately matched 
with that of the healthy control group, the restricted sam-
ple size underscores the need for additional large-scale 
investigations to corroborate our findings.

Conclusions
This study revealed changes in monocyte gene expression 
with age, created a model to predict monocyte immune 
age, and showed that exposure to adverse conditions in 

utero due to GDM accelerates aging in offspring mono-
cytes. Maternal weight gain, high fasting blood glucose 
levels, and cord blood C-peptide levels during pregnancy 
are key factors in this effect. Research shows that manag-
ing weight and blood glucose levels in pregnant women 
with GDM is important for reducing the impact on their 
children’s immune system.

(See figure on previous page.)
Fig. 4  Two patterns of age-related genes (a) Venn diagram showing the distribution and quantity of two patterns of change in genes upregulated with 
age. IPCP: Increased positive cell percentage; IEIC: Increased expression levels in individual cells (b) Bubble maps showing the results of GOBP functional 
enrichment of genes with an increased number of positive cells (c) Bubble maps showing the results of GOBP functional enrichment of genes with 
increased expression in individual cells (d) Venn diagram showing the distribution and quantity of two patterns of change in genes downregulated 
with age. DPCP: Decreased positive cell percentage; DEIC: Decreased expression levels in individual cells (e) Bubble maps showing the results of GOBP 
functional enrichment for genes with reduced positive cell numbers (f) Bubble map showing the results of GOBP functional enrichment of genes with 
reduced expression in a single cell

Fig. 5  Construction of the immune age prediction model (a) The prediction results of the random forest prediction model in the training set (top) and 
the test set (bottom). The Pearson correlation coefficient (R2) was utilized to quantify the relationship between the predicted age and the actual age (b) 
Violin chart showing the age prediction of monocytes in healthy controls and patients with mild or severe COVID-19 in the GSE206283 dataset at first 
admission. One-way ANOVA was used to calculate the difference between the groups (c) Bar chart showing the age prediction of monocytes in healthy 
controls and patients with mild or severe COVID-19 at first admission. An independent t test was used to calculate the differences between the groups 
(d) Violin plot showing the difference between the predicted age of monocytes and the actual age at first admission to the hospital in healthy controls 
and patients with mild or severe COVID-19. One-way ANOVA was used to calculate differences between groups (e) The bar chart shows the difference 
between the predicted age of monocytes and the actual age of healthy controls and mild or patients with severe COVID-19 when they were first admit-
ted. The difference between groups was calculated using independent t tests
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Fig. 6 (See legend on next page.)
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