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Abstract 

The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, under-
standing how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, 
we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns 
to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabo-
lism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell 
composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified 
with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched 
in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients 
with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we 
proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications 
in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, 
and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related 
immune cell compositions, we developed a novel BA prediction model PHARE (https:// xiazl ab. org/ phare/), which can 
apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease 
(CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune 
cell proportions and function associated with aging, both in health and disease, and provided a novel tool for suc-
cessfully capturing features that accelerate or delay aging.
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Introduction
Advanced age is often linked to increased morbidity 
and mortality from infectious diseases, and decreased 
vaccination efficacy [1, 2]. Aging is also a leading risk 
factor for the increased incidence of most cancer types 
[3, 4]. Although most children develop mild and self-
limiting symptoms of infectious diseases, such as 
COVID-19, a severe and delayed post-SARS-CoV-2 
inflammatory response in children has been recognized 
worldwide, correlating with disease severity [5, 6]. 
Moreover, compared with older individuals, children 
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appear to have a more robust immune response dur-
ing acute infections, whereas young cancer patients 
treated with immune checkpoint inhibitors often have 
poor outcomes [7, 8]. The immune system exhibits 
highly age-specific features; however, the impact of 
age-related changes on different components of the 
immune system is not fully understood [2]. Therefore, 
the characterization of immune populations and func-
tion among different age groups could provide valuable 
insights into mechanisms underlying disease develop-
ment and inform more precise disease treatments in 
the future.

Not everyone ages at the same rate. Usually, aging 
affects health and varies from person to person; there-
fore, it is not surprising that people with the same CA 
manifest diverse aging-related phenotypes [9]. In this 
regard, a person’s BA can often differ from his/her CA. 
Arrojo et al. revealed that most organs, even in one per-
son, are also a mix of cells and proteins of vastly differ-
ent ages, which depend on their rates of regeneration 
[10]. The ability to accurately measure human aging from 
molecular profiles has practical implications in many 
fields, particularly in disease prevention and treatment 
[11]. As expected, previous studies have developed many 
BA measurements that attempt to capture physiological 
changes during the aging process, such as DNA methyla-
tion, telomere length, and frailty [9, 11, 12]. Meanwhile, 
there are tools have been developed for BA prediction 
based on blood transcriptome, given the ease of obtain-
ing samples [13, 14]. Considering that most immune dis-
eases present strong age characteristics, the functional 
states of immune cells do not always match their CA in 
these diseases [15]. Therefore, effective measurements to 
comprehensively depict the age distribution of immune 
cells to accurately assess the impact of various diseases 
on the aging process are urgently needed.

Single-cell RNA sequencing (scRNA-seq) is a pow-
erful technology used for studying individual cells and 
delineating complex cell populations. Recently, scRNA-
seq has been performed in several studies to profile the 
immune landscape of human peripheral blood mononu-
clear cells (PBMCs) at different ages [16–18]. However, 
most of these studies have primarily focused on certain 
age periods, rather than the entire lifespan from 0 to over 
110 years old, and many studies only analyzed a single 
type of immune cell, such as T cells [19, 20], B cells [21], 
or myeloid cells [22, 23]. Owing to the complexity of age 
spans and cell populations, the previous studies men-
tioned above limit our understanding of how immune 
profiles contribute to disease development from a sys-
tematic perspective. Thus, for the first time, we systemat-
ically analyzed all immune cells and their transcriptomic 
signatures in human PBMCs across different age groups 

encompassing the entire lifespan to establish an elaborate 
and aging-focused immune landscape.

In the current study, we first integrated three public 
scRNA-seq datasets from 24 healthy individuals across 
different age groups. Through extensive analysis, we 
revealed dynamic changes in cell composition, signaling 
pathways, metabolism, differentiation, and functions of 
human PBMCs over the lifespan. Furthermore, we re-
analyzed other independent PBMC data from COVID-19 
and KD mapping to healthy reference data, and detected 
a functional shift: immune cells’ BA differed from their 
CA, which was associated with the progress of vaccine 
efficacy and complications, respectively. Hereafter, we 
enrolled the largest PBMCs scRNA-seq datasets from 
343 healthy individuals (over 2 million cells), and con-
structed a Physiological Age Prediction (PHARE) model. 
Collectively, our study provides essential insights for the 
precise treatment of patients at different life stages, and 
for building a novel machine-learning model to predict 
the patients’ BA at both scRNA-seq and bulk RNA-seq 
levels.

Results
Depicting global features of human immune cell atlas 
over the lifespan
To determine the effects of age on the immune system, 
we initially integrated three public scRNA-seq data-
sets of PBMCs from 24 healthy individuals across chil-
dren (Cd), teenagers (Tg), adults (Ad), elders (Ed), and 
supercentenarians (Sc) (Fig.  1A). After quality control 
and filtering, we obtained high-quality single-cell tran-
scriptomes from 159,671 cells (Figures  S1A and Sup-
plementary Table  2). Then, the scRNA-seq data were 
normalized and used harmony to remove batch effects 
(Figures S1B). Based on an unbiased integrative analysis 
across all immune cells, 12 cell clusters (Figures  S1C) 
across six main immune cell populations were anno-
tated according to the most salient cell markers: mye-
loid cells (CD14+LYZ+VCAN+), B cells (MS4A1+CD7
9A+CD79B+), T cells (C3D+CD3E+CD3G+), NK cells 
(KLRD1+KLRB1+KLRF1+), platelets (PPBP+GP9+), 
and hematopoietic progenitor cells (Hpc, KIT+CD34+) 
(Fig.  1B, C, and Figures  S1D). Immune cell composi-
tions were compared among different age groups, and 
the results showed that all six immune cell types were 
present in each group, albeit in different proportions. 
To confirm this validity, the proportion of cells in each 
individual was analyzed, and no immune cells showed 
high degrees of interindividual heterogeneity (Fig. 1D). 
As shown in Fig.  1E, the composition of T cells sig-
nificantly decreased, whereas that of NK and myeloid 
cells increased in old groups. Notably, the proportion 
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of platelets gradually increased in old groups (Fig-
ures S1E), which is likely associated with an increased 
incidence of cardiovascular disease in these popula-
tions [24]. The compositions of immune cells from the 
elderly displayed prominent differences because the 
diversities measured with Shannon equitability index 
were significantly higher than those in young groups 
(Fig.  1F). The results implied different aging processes 

in different individuals, and this disparity was amplified 
with aging.

Pluripotency functions in innate immune subsets decline 
with aging
Given that innate immune cells provide the first line of 
defense to control pathogenic infections and instruct the 
subsequent adaptive immune response, we analyzed the 
functional alterations in innate immune cells associated 

Fig. 1 Depicting global features of human immune cell atlas over the lifespan. A Schematic diagram of the scRNA-Seq data collection, processing, 
and analysis design. B Dot plots showing representative signature gene expression in the main immune cell types. C UMAP projection of immune 
cell profiles in PBMC of different age groups. D Overview of data collection datasets, clinical age groups; quantification of main cell types 
per patient and color-coded by main cell type. E Box plot showing distribution of main cell types across different age groups. The P values are 
calculated with kruskal.test. F Bar plots showing the main immune cell types from different age groups (mean ± SD). Average diversity measured 
with the Shannon equitability index for each tissue is shown. Point size of dot plot shows the fraction of cells with non-zero expression
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with aging. To classify each cell subpopulation in an unbi-
ased manner, we re-clustered each cell lineage. Six cell 
clusters comprising five myeloid cell types with unique 
transcriptional features were revealed in the PBMCs of 
all age groups (Figures S2A, and 2B), including two types 
of  CD14+ monocytes (CD14_Mono1 and CD14_Mono2), 
one group of  CD16+ monocytes (PCGR3A+), and two 
types of dendritic cells: CD1C+ cDC (conventional den-
dritic cell) and JCHAIN+ pDC (plasmacytoid dendritic 
cell) (Fig.  2A and B). Among the different age groups, 
we found that CD14_Mono1 was mainly enriched in the 
young groups (Cd, Tg and Ad), whereas CD14_Mono2 
was markedly enriched in the elderly (Fig.  2C and Fig-
ures S2C). Besides, we included healthy samples from an 
independent PBMC bulk RNA-seq dataset (GSE180081) 
for analysis. We found the CD14_Mono2 score of the 
elderly group (≥ 60) was significantly higher than that 
of the young group (< 60), while the CD14_Mono1 
score was significantly lower (Fig. 2D). GSEA analysis of 
CD14_Mono1 and CD14_Mono2 DEGs found the for-
mer was enriched for migration- and response- related 
pathways, while the latter was enriched for epigenetic 
alterations and oxidative phosphorylation (Fig.  2E and 
Supplementary Table  4). Consistent with previous find-
ings [25], both cDC and pDC decreased with increasing 
age (Fig. 2C and Figures S2D). We further want to eval-
uated the functional changes of DC in the different age 
groups. Briefly, we extracted the highly expressed genes 
in DC subsets and clustered them based on their expres-
sion patterns across different age groups. We identified 
a total of 12 distinct gene modules and selected those 
that showed a gradual increase or decrease with age for 
further analysis. We found the genes involved in antigen 
presentation function of cDC gradually decreased with 
age, while the expression of splicing molecules increased 
(Fig.  2F and Supplementary Table  5). With aging, the 
metabolic pattern of pDC was remodeled, while the 
maintenance of protein homeostasis was progressively 
lost (Fig. 2F and Supplementary Table 5). To thoroughly 

explore the function of all myeloid subsets, we evaluated 
the module scores associated with well-defined signa-
tures of inflammation regulation and immune activation 
(Methods). The results indicated that TNF and IL6 sign-
aling were highly activated in CD14_Mono1 cells, while 
CD16_Mono cells showed high IFN-induced signal-
ing (Figures  S2E). For DC populations, pDC displayed 
strong protein secretion ability, whereas cDC had high 
MHC II expression and antigen processing potency (Fig-
ures S2F), which was in agreement with their respective 
roles. In addition, unlike  CD14+ monocytes, the propor-
tion of  CD16+ monocytes did not change substantially 
among different age groups (Fig.  2C). However,  CD16+ 
monocytes in the Tg group exhibited the highest levels 
of inflammation, IL6 and innate receptor signaling (Fig-
ures  S2G). Taken together, the functions of monocytes 
and DCs gradually declined with aging.

NK cells are innate immune cells that play critical roles 
in coordinating tumor immunosurveillance and viral 
infection [26]. Five clusters of NK cells were identified 
in the PBMCs of all the age groups (Figures  S3A), and 
identified four NK cell types with unique transcriptional 
features (Figures S3B), including three types of  CD56dim 
NK  (classical_CD56dim,  inflamed_CD56dim, and  HLA_
CD56dim) and  CD56bright NK (Fig. 2G and H). We found 
that  Classical_CD56dim NK cells increased, whereas 
 Inflamed_CD56dim NK and  CD56bright NK cells decreased 
with aging (Fig.  2I). Notably,  HLA_CD56dim NK cells 
were specifically enriched in the Tg group (Figures S3C), 
although there was variation between healthy individuals 
(Figures S3D). Next, we used module scoring to evaluate 
the functional pathways related to NK based on the IOBR 
package, which provides a comprehensive investigation 
of the estimation of reported or user-built signatures [27]. 
 Classical_CD56dim NK cells had the lowest inflammatory 
signaling and  CD56bright NK cells had strong cytokine and 
chemokine secretion abilities (Figures S3E). Furthermore, 
we took advantage of PROGENy, which addressed both 
limitations by utilizing an extensive collection of publicly 

(See figure on next page.)
Fig. 2 Pluripotency of functions in innate subsets declines with age. A UMAP projection of myeloid profiles in PBMC of different age groups. B Dot 
plots showing expression profiles of marker genes in different myeloid subsets. C Box plot showing distribution of myeloid subsets across different 
age groups. The P values are calculated with kruskal.test. D Box plot showing signature scores of monocyte subsets in different age groups based 
on ssGSEA algorithm, t-tests (two-sided) were performed. E Clustering network of significantly enriched GO pathways in the GSEA analysis. The 
nodes representing the significant GO pathways are colored by normalized enrichment score (NES). F The curves represent the changing trends 
of DCs’ gene modules across different age groups (left), and heatmap showing gene expression of different modules (middle), and the represent 
functional pathways of enrichment analysis were shown within the boxes (right). G UMAP projection of NK profiles in PBMC of different age groups. 
H Dot plots showing expression profiles of marker genes in different NK subsets. I Box plot showing distribution of NK subsets across different age 
groups. The P values are calculated with kruskal.test. J Heatmap showing mean 14 PROGENy pathway scores of different NK subsets. K GO-based 
enrichment analysis illustrating indicated pathways upregulated in  HLA_CD56dim subset. L The curves represent the changing trends of CD56.bright 
NK cells’ gene modules across different age groups (left), and heatmap showing gene expression of different modules (middle), and the represent 
functional pathways of enrichment analysis were shown within the boxes (right)
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available perturbation experiments, to evaluate 14 cell 
global functional pathways of NK subsets [28]. The result 
showed  HLA_CD56dim NK had strong inflammatory sig-
natures and the p53 pathway was activated (Fig. 2J). Con-
sidering that  HLA_CD56dim NK specifically presented in 
the Tg group, we wanted to further explore its features. 

Pathway enrichment analysis of especially upregulated 
in  HLA_CD56dim NK cells revealed enrichment of terms 
associated with “response to IL-12”, “response to IL-15” 
and “NF-kB signaling”, which were consistent with the 
inflammatory phenotype (Fig.  2K). Consistent with the 
literature [29], the  CD56bright NK population responsible 

Fig. 2 (See legend on previous page.)
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for cytokine production also decreased with aging in 
our data (Fig.  2I). Additionally, we extracted the highly 
expressed genes in  CD56bright NK cells and performed 
gene pattern analysis across different age groups. We 
found the decrease in cytokine and chemokine secretion 
ability of this type of NK cell with aging was not due to 
cytokine regulation dysfunction but the decrease in golgi 
function and epigenetic alterations (Fig. 2L and Supple-
mentary Table 6). Similar to  CD56bright NK cells, inflam-
matory  CD56dim NK cells also decreased with age, which 
may relate to cell cycle arrest (Figures S3F). Collectively, 
we revealed aging-related changes in NK cell composi-
tion and function.

Age‑group‑specific adaptive subsets match distinct system 
immune function
Although the steps underlying the activation and differ-
entiation of Age-engaged B cells have been extensively 
characterised [30, 31], the cellular and molecular mecha-
nisms underlying this process remain unclear. Therefore, 
we extracted B cells to further reveal seven cell clus-
ters in PBMCs of all age groups (Figures S4A). Analysis 
of differentially expressed genes across these clusters 
revealed six B cell types with unique transcriptional 
features (Fig.  3A and Figures  S4B): Naïve_B (TCL1A+), 
CD83_B (CD83+), Memory_B (TNFRSF13B+), Acti-
vated_memory_B (CD86+), Plasma_cell (XBP1+MZB1+), 
and Transitional_B cells (CD5+) (Fig. 3B). Unlike innate 
immune cells, B-cell subsets varied erratically across age 
groups except Plasma_cell (Fig.  3C). However, although 
the number of plasma cells gradually increased with age, 
the function of protein secretio declined (Fig. 3D). Nota-
bly, CD83_B cells were specifically enriched in the Tg 
group, and each patient in this group had a higher pro-
portion of these type B cells (Figures  S4C and 4D). To 
reveal the features of each B cell subset, we evaluated 
the module scores of functional pathways based on the 

signatures collected from previous studies. As depicted 
in Figures  S4E, plasma cells showed higher protein 
secretion ability and lower antigen processing features 
among the six cell types, whereas Activated_memory 
B cells had the highest inflammatory score. Besides, 
CD83_B cells exhibited the second highest inflamma-
tory features, also characterized by high expression of 
MHC class II molecules. PROGENy analysis illustrated 
that CD83_B cells had high TGF-β and MAPK pathway 
scores (Figures  S4F). Thereafter, we compared CD83_B 
cells (Tg-enriched) with naïve B cells and found the for-
mer upregulated activation-related molecules (IGFBP4 
and CD69) and inflammatory molecules (CCL4 and 
CCL4L2) (Fig. 3E and Supplementary Table 7). Further-
more, gene set enrichment analysis (GSEA) similarly 
indicated that CD83_B cells were transcriptionally poised 
to IL-2 and IL-15 stimulated B cells in an inflammatory 
state (Fig. 3F). Aging is associated with decreased efficacy 
of vaccination in both humans and mice, with reduced B 
cell memory formation [32]. In this regard, we found that 
BCR signaling was significantly impaired in the elderly 
Memory_B cells, which was also related to the reduced 
efficacy of vaccination and increased susceptibility to 
infection in the elderly (Figures S4G). Activated memory 
B cells were enriched in the Ad group. To reveal this type 
of cell function, we compared activated memory B cells 
with memory B cells and found that the former upregu-
lated many cytotoxic molecules, such as NKG7, GNLY, 
CCL5, and GZMB (Figures  S4H). Taken together, our 
data suggest that B cells did not adhere strictly to age var-
iation, and group-specific enriched subsets played special 
roles with distinct functional features.

In contrast to B cells, there is a clear and well-accepted 
understanding that age-related aberrant T cell-driven 
cytokine and cytotoxic responses lead to the failure of 
immune tolerance and sensitivity to infectious diseases 
in older people [33]. Therefore, we extracted T cells to 

Fig. 3 Age-group-specific adaptive subsets match distinct system immune function. A UMAP projection of B cell profiles in PBMC of different 
age groups. B Dot plots showing expression profiles of marker genes in different B cell subsets. C Box plot showing distribution of B cell subsets 
across different age groups. The P values are calculated with kruskal.test. D Densityheatmap showing indicates pathway score of plasma cells based 
on AUCELL algorithm (left), and representative genes dot plot (right). E Differential gene expression analysis using the log-fold change expression 
versus the difference in the percentage of cells expressing the gene comparing CD83_B cells versus Naïve_B cells (Δ Percentage Difference). F 
GSEA plots depict the enriched gene sets identified between the CD83_B cells and naïve_B cell subsets associated with B cell activation. G UMAP 
projection of T cell profiles in PBMC of different age groups. H Dot plots showing expression profiles of marker genes in different T cell subsets. I 
Box plot showing distribution of T cell subsets across different age groups. The P values are calculated with kruskal.test. J Densityheatmap showing 
indicates pathway score of CD8_CTL based on AUCELL algorithm (left), and representative genes dot plot (right). K Densityheatmap showing 
indicate pathway score of Treg based on AUCELL algorithm. L Heatmap showing transcriptomic similarity of T cell subsets. M Spearman correlation 
between percentage of CD4_CTL and unknown_T cells. N The distribution of T cell subtypes during the transition, along with the pseudo-time 
(upper). Subtypes are labeled by colors (lower). O Two-dimensional plots showing the dynamic expression of feature genes. P Heatmap showing 
the dynamic changes in gene expression along the different branches (left) and pathway enrichment results in each gene module (right). In figure 
D, J and K, the upper and lower curves of heatmap represent 75% and 25% of density, respectively. Point size of dot plot shows the fraction of cells 
with non-zero expression. The P values in Figure D, J and K are calculated with kruskal.test

(See figure on next page.)
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explore the timing and mechanisms behind the decline 
in T cell function. First, all T cells were clustered into 18 
subsets (Figures  S5A). We then identified four  CD4+ T 
subsets (CD4_TNa, CD4_TEM, CD4_CTL, and Treg), 
three  CD8+ T subsets (CD8_TNa, CD8_TEM, and 
CD8_CTL), NKT, proliferating_T, and unknown_T cells 
(Fig.  3G). Subsequent marker gene expression analysis 
confirmed the accuracy of these annotations (Fig.  3H), 

and the most up- and down-regulated genes were also 
calculated (Figures  S5B). Among the T cell subsets, we 
found unprecedented percentage variation across age 
groups (Fig.  3I). Notably, CD4_CTL and unknown_T 
cells were especially enriched in the Sc group, although 
there was variation between patients (Figures  S5C and 
5D). To characterize various T cell subsets, we evaluated 
the functional pathways of all T cell subsets using module 

Fig. 3 (See legend on previous page.)
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scores. Our results showed that, except CD4_CTL,  CD4+ 
T cell subsets exhibited lower activities of HLA_signature 
and chemokine pathways than  CD8+ T cell subsets (Fig-
ures S5E). Interestingly, CD4_CTL exhibited comparable 
cytotoxic and inflamed scores, yet they did not express 
the same exhausted features as CD8_CTL (Figures S5F). 
Furthermore, the PROGENy score also distinctively clus-
tered  CD4+ and  CD8+ T cells (Figures S5G). CD8_CTL 
cells, which serve as the body’s robust defenders, were 
found to be most affected by aging [33]. We, there-
fore, examined the antimicrobial function of this T cell 
type across different age groups and found a decline in 
the elderly (Fig.  3J). Dot plots of related genes revealed 
that CD8_CTL cells in old people gradually lost the CD8 
molecule (CD8A and CD8B) expression, whereas nature 
killer receptors (KLRB1 and KLRD1) were upregulated. 
We also assessed the suppressive function of Tregs by 
analyzing the IL2-STAT5 and TGF-β pathways across dif-
ferent age groups. Results showed that although children 
had a higher percentage of Tregs, the Tregs in age group 
showed lower IL2 and TGF-β signaling, possibly due to 
limited antigenic acclimation (Fig.  3K). Effector mem-
ory T cells (TEM), which indicate the body’s response 
to secondary immunity. As shown in Figures  S5H, 
the TCR signaling in CD4_TEM and CD8_TEM were 
found to be lower in children, peaked in adults, and 
declined in the elderly. A similar pattern was observed 
in TCR and inflammatory signaling in NKT cells, while 
chemokine capacity was affected only by advanced age 
(Figures S5I). Recent research has highlighted the signifi-
cant role of CD4_CTL cells in autoimmune diseases and 
tumor immunity, and an increase in these cells has been 
observed in supercentenarians [17, 34, 35]. However, the 
precursor cells for CD4 CTL remain unclear. As shown 
in Fig.  3I, CD4_CTL and unknown_T cells were both 
enriched in the Sc group, prompting us to investigate a 
potential correlation between these two T cell types. Cor-
relation analysis suggested that other T cells were most 
similar to CD4_CTL at the transcriptome level (Fig. 3L). 
Further correlation analysis revealed a significant strong 
correlation between the proportion of CD4_CTL and 
unknown_T cells (Pearson correlation value 0.88, 
Fig. 3M). According to previous study [36], we discovered 
that unknown_T cells highly expressed CD4_CTL pre-
cursors’ molecules (CD27, TCF7, and LTB) compared to 
CD4_CTL cells (Figures S5J and Supplementary Table 8). 
Therefore, we extracted CD4_CTL and unknown_T cells 
for pseudotime analysis to construct a developmental tra-
jectory (Fig. 3N). We found that the expression levels of 
naive and stemness features were down-regulated, while 
killing molecules were gradually up-regulated along 
with pseudotime (Fig.  3O). We next investigated the 
transcriptional changes associated with two branches, 

and explored the functional features of two distinct 
CD4_CTL subsets. We identified one subset character-
ized by a response to chemokines, and another express-
ing adhesion molecules indicative of direct contact with 
target cell; both subsets acquired cell-killing abilities dur-
ing differentiation (Fig.  3P and Supplementary Table  9). 
Together, we identified a new CD4 T cell subset that was 
enriched in Sc group, may related to a higher percentage 
of CD4_CTL cells in the blood supercentenarians.

Characterizing developmental hierarchies and quiescent 
immune cells using CytoTRACE
Considering that not all immune processes are uniformly 
sensitive to aging, various immune cell populations are 
heterogeneously influenced by the increase in age [37]. 
To reveal cellular states with intrinsic differences in dif-
ferentiation state across different age groups, we used 
CytoTRACE to construct a cell differentiation atlas 
among PBMCs (Methods). As depicted in Figures  S6A, 
all myeloid cells were divided into different cell clusters, 
which were highly consistent with the age groups accord-
ing to their CytoTRACE scores. Additionally, the box plot 
showed that myeloid cells in the Cd, Ad, and Tg groups 
were less differentiated, while those in the elderly showed 
higher levels of differentiation. Surprisingly, myeloid cells 
in the Sc group exhibited a higher potential for differenti-
ation capacity. The conclusion that aging markedly affects 
NK function remains controversial and is related to the 
diverse health statuses of the study subjects [38]. Our 
results demonstrated that NK cells in the Ad group had 
the highest differentiation capacity, suggesting that their 
differentiation function was well maintained into adult 
stage (Figures  S6B). In contrast to innate immune cells, 
previous studies have indicated that adaptive immune 
function declined with age [30, 39]. However, our find-
ings illustrated that the differentiation state of B/T cells 
did not decline in a straight line but gradually improved 
before the adulthood, peaked in adults, and then declined 
(Figures S6C and 6D). Unlike other immune cells, T cells 
in the Sc group were the most differentiated, in contrast 
to Ed, which strictly followed a trend of gradual decline 
with increasing age. Conversely, these results revealed 
that lymphoid and myeloid cells had different differen-
tiation trajectories; the former had a well-established dif-
ferentiation potential early on, while the latter developed 
this ability until adulthood.

Analysis of the metabolic pathways reveal a shift in energy 
supply during immune cell aging
Metabolism, being central to all biological processes, is 
crucial for the proper regulation of immune cells. Per-
turbations in metabolism can cause immune dysfunc-
tion and disease progression [40]. Therefore, we aimed 
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to determine the metabolic activity of all immune cells 
across different age groups at single cell resolution. Fol-
lowing the instructions recommended by KEGG’s offi-
cial website, we divided the extracted specific metabolic 
pathways into six categories (Methods). Lipid and car-
bohydrate metabolism declined the most dramatically 
with increasing age (Figures  S7A). Notably, some lipid-
related metabolic pathways showed an inverse trend, 
such as arachidonic acid metabolism in myeloid and 
NK cells, alpha-linolenic acid metabolism, steroid hor-
mones, and fatty acid biosynthesis in B and T cells. As 
shown in Figures S7B, oxidative phosphorylation activity 
was heightened in elderly groups across all immune cells, 
with other energy metabolism pathways also displaying 
increased activity in advanced age, excluding myeloid 
cells. Amino acid metabolism is essential for metabolic 
rewiring, supporting various immune cell functions 
beyond increased ATP generation, nucleotide synthesis, 
and redox balance [41]. Notable amino acid metabolism-
specific enhancements were observed in aged T cells. In 
particular, taurine and hypotaurine metabolism pathways 
were detected exclusively in T cells and were more active 
in the elderly. Intrigued by these findings, we further 
explored this metabolic pathway to differentiate between 
 CD4+ and  CD8+ T cell subsets. Surprisingly, it was not 
the  CD8+ T cells (Figures  S7C), but the  CD4+ T cells 
(Figures S7D) that showed an increasing trend with age. 
Collectively, these results highlighted that besides the 
uniformly active metabolites found in various immune 
cells of the elderly, there were also specific metabolites 
that were elevated exclusively in certain immune cells, 
which deserves further study.

Decline of infection‑fighting immune function with aging
To delineate the characteristics of entire immune cell 
subsets, we integrated all immune cells (Panage_data) 
and calculated the percentages of each cell type within all 
PBMCs across samples (Supplementary Table  3). Unsu-
pervised hierarchical clustering, based on cellular com-
position, showed that the patients formed a remarkable 
divergence in different age groups (Fig.  4A). Odds ratio 
(OR) analysis revealed the cell distribution preferences of 
each age group, such as  HLA_CD56dim NK and CD83_B 
cells enriched in Tg and unknown_T cells, and CD4_CTL 
enriched in Sc (Fig.  4B). Furthermore, to confirm the 
preferences of  HLA_CD56dim and CD83_B cells in Teen-
agers and verify their widespread distribution, we incor-
porated another recently published scRNA-seq dataset 
from a study that included seven patients with multisys-
tem inflammatory syndrome (MIS-C), eight patients with 
coronavirus disease 2019 (COVID-19), and seven age- 
and sex-matched healthy controls (HC) [42]. We mapped 
124,448 immune cells from all patients to Panage_data, 

assigning cell annotation and age group labels based on 
transcriptome similarity (Figures S8A and 8B) (Method). 
From the OR analysis results, the  HLA_CD56dim and 
CD83_B cells also displayed a pronounced preference for 
the Tg group (Fig. 4C), while CD83_B and Treg cells were 
predominantly found in HC (Fig. 4D). These results sug-
gested that CD83_B cells were depleted, while reduced 
Treg content was associated with systemic inflamma-
tion in COVID-19 and MIS-C patients. Considering the 
actual age of all included COVID-19 and MIS-C patients 
were below 18 years (Cd and Tg group), we defined 
the immune cells that mapped to Ad group (> 18y) as 
‘shift-immune’ cells. We then systemically assessed cell-
type-specific functional changes among ‘shift-immune’ 
and ‘preserve-immune’ cells in COVID-19 and MIS-C 
patients (Method). We found that ribosome-related path-
ways were up-regulated in shift-immune cells, while TLR 
signaling, microbial and vaccine response-related path-
ways were significantly down-regulated (Fig. 4E). Besides, 
CD4_TNa cells underwent more significant remodeling 
in the COVID-19 group than in the MIS-C group, while 
CD8_TNa cells were more profoundly affected in MIS-C 
patients.

Based on the differences in the composition of immune 
cells, we conducted a comprehensive assessment of the 
anti-infection ability and sepsis score for each age group 
based on all immune cells (Methods). As depicted in 
Fig.  4F, except for the sepsis score, anti-bacterial, anti-
viral, and anti-antimicrobial scores all declined pro-
gressively with increasing age. The cell types primarily 
contributing to these scores varied within each age group 
(Figures S8C). Considering the critical role of IFN sign-
aling in anti-bacterial [43], anti-viral [44], and anti-anti-
microbial [45] abilities, we further evaluated two types 
of IFN signaling across different age groups. These sign-
aling pathways consistently decreased in the two elderly 
groups (Figures S8D). In summary, we revealed that the 
immune cell composition of each age group was ever-
changing, and aging remodeled the anti-infection func-
tions of immune cells.

Functional shifting of inflammatory myeloid cells 
is associated with complication progression in Kawasaki 
disease (KD)
KD, a self-limiting vasculitis, predominantly affects chil-
dren under 5 years old and has become the leading cause 
of acquired heart disease in children from developed 
countries [46]. Besides the primary febrile symptoms, 
KD can lead to serious arterial lesions, and the prompt 
diagnosis of KD remains challenging [47]. Moreover, 
a recent study has indicated that KD can accelerate 
immune cell senescence through the generation of reac-
tive oxygen species [48]. Therefore, we examined whether 
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scRNA-seq data from KD, mapped to Panage_data, could 
capture KD-induced cellular senescence. We reanalyzed 
scRNA-seq data from a previous study that collected 
seven patients with acute KD before and after IVIG ther-
apy [47]. After data quality control, we obtained 35,336 
high-quality cells for further analysis before IVIG ther-
apy and mapping to Panage_data (Figures  S9A). Based 
on the aforementioned marker genes, six immune cell 
types were finely defined, including myeloid, NK cells, 
T/B cells, platelets, and Hpc (Fig.  5A and Figures  S9B). 
Furthermore, we found that many immune cells in the 
Cd age group were mapped to older age groups (Fig. 5B). 

This result suggested a broad influence of KD acceler-
ated immune cell senescence process. Considering that 
all KD patients were children (Cd), we defined the change 
from Cd to Cd (Cd-Cd) as the ‘preserve-state’ and all 
others (Cd-Tg, Cd-Ad, Cd-Ed, and Cd-Sc) as ‘shift-state’ 
according to the mapping result (Figures S9C). We noted 
a remarkable divergence between the preserve- and 
shift- immune cell states, indicating transcriptomic dif-
ference between the two cell states (Figures S9D). To fur-
ther verify the differential states of the shifting cells, all 
the immune cells were transferred to CytoTRACE. The 
result showed immune cells in the Cd group (preserve) 

Fig. 4 The anti-infectious functions gradually decline among age increase. A Heatmap showing clustering results based on the proportion of PBMC 
immune cell clusters, color-coded by age groups, patients indicated, Zscore means scaled proportion of cells. B Heatmap showing the ORs of meta 
clusters occurring in different age groups based on TAIA data. Heatmap showing the ORs of predicted cell types occurring in different age groups 
(C) and clinical groups (D) based on independent COVID cohort. E GSEA of shifting versus preserving immune cells in MIS-C (left) and COVID-19 
(right) patients. Selected gene sets are grouped into functional/pathway categories. Dot color denotes normalized gene set enrichment score, 
and size indicates log10(adjusted P value). F Comparing anti-infectious related module scores with different age groups based on each patient’s 
contribution. Statistical significance between groups is computed using a two-sided non-parametric Wilcoxon test
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possessed the highest degree of differentiation potential 
compared to the other groups (Fig.  5C). As depicted in 
Fig. 5D, myeloid cells had higher shifting ratios (47.84%) 
than T (13.84%) and B cells (20.14%). Next, we assessed 
the functional differences between preserve- and shift-
myeloid cells. GO enrichment analysis revealed that 
shifting myeloid cells increased the expression of genes 
involved in migration, cellular stress, and the inflamma-
tory response (Fig. 5E). KEGG enrichment analysis iden-
tified pathways associated with severe KD complications, 
such as atherosclerosis, rheumatoid arthritis, and myo-
carditis in the highly expressed genes of shifting-myeloid 
cells (Fig.  5F). These findings suggested that the abnor-
mal increase in shifting myeloid cells in KD patients may 
be associated with adverse clinical outcomes. In addition, 
we also found that shifting-T/B cells all possess a more 
active state than preserve-cells (Figures S9E and 9F). Cell 
metabolism analyses showed that immune cells in the 
shifting state had higher lipid and vitamin-related meta-
bolic activities in contrast to preserving cells, indicating 
that shifting cells presented an overwhelming immune 
response (Fig. 5G and Figures S9G).

Intravenous immunoglobulin (IVIG) within the first 
10 days after fever onset is the standard therapy for KD 
and remarkably reduces the rate of complications [49]. 
In this regard, we aimed to investigate the changes in 
KD PBMCs’ shifting ratios after IVIG therapy. We ana-
lyzed the scRNA-seq data of KD after IVIG therapy 
and mapped it to Panage_data (Figures  S9H). The same 
immune cell types were identified based on marker 
genes (Fig.  5H and Figures  S9I). CytoTRACE analysis 
further confirmed that shift-cells exhibited a lower dif-
ferentiation potential (Figures  S9J). After IVIG therapy, 
each immune cell type was also found to shift-state, and 
the total shift- ratio was comparable (23.44% to 25.23%) 
(Fig. 5I). It is well established that monocyte abundance 
decreases and plasma cell numbers increase following 
IVIG therapy [47, 50, 51]. Our results further showed 

that the number of shift- B cells increased (20.14% to 
36.10%), while shift- myeloid (47.84% to 36.62%) and 
NK cells (30.20% to 23.66%) decreased (Fig. 5J). Notably, 
shift- myeloid and NK signature remarkably down-regu-
lated after IVIG therapy (Fig.  5K). Thereafter, we asked 
whether the shift-myeloid signature could be considered 
as a robust measure, and further evaluated changes after 
therapy using independent bulk RNA-seq datasets. We 
found shift-myeloid signature was significantly reduced 
after IVIG/IFX treatment (Fig.  5L). Besides, patients 
resistant to IVIG treatment had a more pronounced 
shift-myeloid signature compared to responsive patients 
(Fig. 5M). Correlation analysis revealed that shift-myeloid 
signature may also induce T cell senescence (Fig. 5N). It 
is known that KD progresses through different stages, 
but there is no diagnostic test for exact staging. We found 
that shift- myeloid signature was significantly higher in 
the acute phase than in the convalescent phase (Fig. 5O), 
which may provide new diagnostic insights for KD. Col-
lectively, our results showed that the emergent patho-
genic (shift) myeloid cells in PBMCs of KD patients may 
be responsible for complications; therefore, treatments 
that attenuate its proportion and pathogenicity could 
alleviate symptoms.

Constructing a machine learning predictor model to reveal 
the aging process
To build a transcriptome-based physiological age pre-
dictor model (PHARE), we compiled scRNA-seq data-
sets from PBMCs of healthy individuals spanning one 
lifespan, which contained more than one million cells 
(Method). All cells received cell annotation based on 
Panage_data, and then the proportion of all immune cell 
types was calculated to train the PHARE model (Fig. 6A). 
PHARE utilized two different pipelines for scRNA-seq 
and bulk RNA-seq data to predict physiological age from 
new datasets (Fig. 6B). We firstly evaluated the predictive 
performance of our model in the 177 healthy individuals 

Fig. 5 Functional-shifting inflammatory myeloid cells are associated with complications emerge in KD. UMAP projection of immune cell profiles 
from KD PBMCs, (A) group by cell types (B) and predicted groups. C Boxplots showing CytoTRACE values for different predicted groups of KD 
PBMCs. D Alluvial diagram showed the different shifting rates from KD PBMCs mapping to TAIA. Axis 1, 2, and 3 represented real age, predicted 
groups, and cell types. Dotchart showed GO-BP (E) and KEGG (F) based enrichment results of shift- versus preserve- myeloid upregulated genes. 
Color indicates  log10Pvalue, and size indicates gene counts. (G) lipid-metabolic signature pathways in the main immune cell types of different age 
groups. Both color and size indicate the VISION score (H) UMAP projection of immune cell profiles from KD PBMCs after IVIG treatment, group by cell 
types. I Alluvial diagram showed the different shifting rates from KD PBMCs after IVIG treatment mapping to TAIA. Axis 1, 2, 3 represented real age, 
predicted groups and cell types. J Percentages of different myeloid and NK cell shift- subsets between before and after IVIG treatment, color-coded 
by cell subsets. K Violin plot showing shift- myeloid (upper) and NK (lower) signature score before and after IVIG treatment (GSE168732). The P 
values were calculated with wilcox.test. L Box plot showing shift- myeloid signature scores before and after IVIG treatment (left) or IFX treatment 
(right) based on ssGSEA algorithm (GSE48498). M Box plot showing shift- myeloid signature scores before and after IVIG treatment (left) 
or differential response groups (right) based on ssGSEA algorithm (GSE16797). N Spearman correlation analysis between shift- myeloid and T cell 
signature score (GSE16797). O Box plot showing shift- myeloid signature scores in different periods of onset based on ssGSEA algorithm (GSE73463). 
In figure L, M and O, the P values are calculated with t-tests (two-sided). The P values in Figure C is calculated with kruskal.test

(See figure on next page.)
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using tenfold cross-validation. Specifically, the individu-
als were divided into 10 roughly equal parts. In each iter-
ation, the model was trained on 9 parts, with predictions 
made on the remaining part, and the mean Mean Abso-
lute Deviation (MAD) between chronological age and 
predicted age was calculated as a performance metric. 
After completing 10 rounds of training and generating 
predictions for all individuals, the final average MAD all 

validations was 9.43 years (Fig. 6C). We noted there were 
no age differences were found when comparisons were 
made on each dataset, this result indicated the model 
was robust and independent of the different datasets 
(Fig. 6D). To further validate the accuracy and transfer-
ability of PHARE, we tested another PBMC scRNA-seq 
dataset [52] from a new cohort of healthy individuals 
(syn49637038, n = 166). We found the MAD was 9.35 

Fig. 5 (See legend on previous page.)
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years in this dataset similar to the results of internal vali-
dation, indicating that PHARE had good accuracy for 
age prediction (Fig.  6E). To assess whether PHARE can 
detect disease-induced aging changes, we then applied 
PHARE to scRNA-seq datasets from various disease 

samples. As hypothesized, we found the predicted age 
difference for disease-derived datasets to be 13.61 years, 
higher than that for the healthy sample (Fig. 6F). Besides, 
we found age difference differed significantly across 
datasets from different disease sources, which indicated 

Fig. 6 Constructing an age predictor model to explore human aging process. Workflow summary of PHARE construction (A) and applied PHARE 
to age prediction based on scRNA-seq and bulk RNA-seq data (B). C Spearman correlation analysis between predicted and actual age in discovery 
scRNA-seq datasets from healthy people. D Box plot showing age difference was not different between different healthy scRNA-seq cohorts. E 
Spearman correlation analysis between predicted and actual age in validation scRNA-seq datasets from healthy people. F Spearman correlation 
analysis between predicted and actual age in scRNA-seq datasets from diseased people. G Box plot showing age difference was significantly 
different between different disease cohorts. H Box plot showing age difference was significantly different between different stages of SLE. I Box 
plots showing age difference were significantly different between different clinical groups. J Spearman correlation analysis between predicted 
and actual age in bulk RNA-seq datasets from healthy people. K Box plot showing age difference was significantly different between healthy 
and CAD samples based on bulk RNA-seq data (GSE180081), the P values are calculated with t-tests (two-sided). In figure C, D and F, the P values are 
calculated with kruskal.test. In Figure G, H and J, the P values are calculated with t-tests (two-sided)
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diseases had a variable impact on the aging process 
(Fig.  6G). Further analysis in systemic lupus erythema-
tosus (SLE) patients revealed flare symptoms and those 
treated with no response had significantly higher age dif-
ference than those well-managed (Fig.  6H). This result 
suggested PHARE captured aging-accelerated features, 
which can help assess the impact of treatment. When 
applied to a COVID-19 dataset, PHARE revealed that 
patients with multisystem inflammatory syndrome in 
children (MIS-C) appeared older than ordinary COVID-
19 patients and HC (Fig. 6I). This finding was consistent 
with the notion that hyper-inflammation can accelerate 
the aging process. Although PHARE was constructed 
based on scRNA-seq data, we wanted to further test 
whether it was also applicable for age prediction from 
bulk RNA-seq data. We then evaluated the accuracy of 
PHARE in two bulk RNA-seq datasets from healthy sam-
ples, which had age difference between chronological 
age and predicted age of 9.09 years (Fig. 6J). This result 
indicated performance of PHARE on the bulk RNA-seq 
data remains robust. We further performed PHARE on 
another bulk RNA-seq data from CAD, and found CAD 
patients also had higher age difference than HC sample 
(Fig. 6K). Overall, these results illustrate that PHARE is a 
robust aging clock predictor, which can successfully cap-
ture aging-accelerated and aging-delayed features across 
various diseases.

Discussion
The aging process is complex, influenced by genetics, the 
environment, and their interplay. Given these complexi-
ties, traditional molecular biology approaches often fall 
short of elucidating the multimodal processes of aging. 
Single-cell techniques have emerged as powerful tools in 
high-throughput biology and systems immunology analy-
ses [37]. By integrating single-cell datasets from previous 
studies [5, 17, 47], our study illustrated immune cell sign-
aling, metabolism, differentiation, and function changes 
of PBMCs, ranging from newborns to supercentenarians. 
We revealed several period-specific enriched cell types 
and reproduced these findings in independent datasets. 
Notably, we discovered a new population of T cell subset 
(unknown_T) in supercentenarians, whose gene expres-
sion were similar to CD4_CTL and proportions are posi-
tively correlated with CD4_CTL. Besides, we found this 
subset had  the potential differentiated into two distinct 
CD4_CTL subsets. By mapping immune cells from auto-
immune and infectious diseases to healthy immune cells 
across human lifespan, we accurately captured aging-
accelerated features at the cellular level. Collectively, our 
study constructed the first immune cell functional profile 
completely spanning people’s lifelong, and developed a 
machine learning model capable of predicting the BA of 

patients, suitable for both scRNA-seq and bulk RNA-seq 
datasets.

With aging, innate immune cells exhibit heterogeneous 
aging phenotypes, which correlate with their impaired 
capability for performing effective immune responses 
to newly encountered pathogens or vaccine antigens 
[29]. Consistent with a previous study, our results also 
showed a bias towards myeloid over lymphoid cell dif-
ferentiation [53]. While the total percentage of myeloid 
cells was higher in the elderly, the proportions of both 
cDC and pDC decreased with age. Additionally, mono-
cytes and dendritic cells progressively lose their immune 
stimulation function as they age. This contributes to why 
advanced age is associated with progressive immune 
deficiency, increased susceptibility to infections, and 
an impaired response to vaccination [54]. NK cells are 
another vital component of the innate immune system 
and serve as the first line of defense against infections 
and emerging malignancies. Our findings showed an 
increased percentage of NK cells in the elderly; however, 
a large proportion of these were senescent NK cells with 
weakened functional pathway signaling. Additionally, 
 CD56bright NK cell subsets, known for rapid proliferation 
and extensive cytokine and chemokine production upon 
activation, gradually decrease with aging [38]. Notably, 
we identified a specific NK cell subset named HLA_NK 
cell, which was particularly enriched in the Tg group. 
Through pathway enrichment analysis, we found that 
HLA_NK cells showed high expression of IL-12 and IL-15 
signaling genes. Previous studies have demonstrated that 
IL12 and IL15 sustain the effector function of NK cells in 
established tumors and infections [55, 56]. Therefore, this 
NK cell subset may contribute to the lower cancer rates 
and robust anti-infection abilities observed in teenagers.

Unlike the innate immune system, the functions of 
adaptive immune cells undergo drastic remodeling, 
often described as a shift from naïve to memory pheno-
types with increasing age [2]. The representation of B 
cells is considerably altered with aging, and age-associ-
ated B cells, termed CD19+CD21−CD23− B cells in old 
mice and CD19+CD38−CD24− B cells in humans, were 
found to increase [57, 58]. In addition to the change in 
composition, B cell functions also become dramatically 
remodeled, gradually losing their antibody production 
capacity and acquiring inflammatory characteristics. We 
found a potential mechanism: a decreased protein secre-
tion ability in plasma cells, marked by reduced expres-
sion of genes involved in protein trafficking (ARF1 and 
ARFGAP3), protein sorting (AP-3 complex), and pro-
tein channel (TMED10) in the elderly [59, 60]. Unlike 
normal B cells, Age-Associated B Cells (ABCs) can rap-
idly respond to innate stimuli (toll-like receptors) and 
require minimal B-cell receptor (BCR) stimulation for 
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activation [61]. Mechanistically, we found that BCR 
signaling in memory B cells, which are prevalent in the 
elderly, diminished with age. Additionally, CD83_B cells 
were specifically enriched in the Tg group, a result vali-
dated by an independent dataset. GSEA also indicated 
that CD83_B cells were transcriptionally predisposed 
to differentiate into light zone B cells. Considering that 
light zone B cells are activated and selected based on the 
affinity of their immunoglobulin, this finding implies that 
vaccination during adolescence might be more effective 
[62]. Owing to thymic involution in early adulthood, the 
maintenance of the naïve T-cell pool from the adult stage 
relies heavily on peripheral homeostatic proliferation 
[61, 63]. Moreover, because aging hematopoietic cells 
tend to favor myeloid differentiation, both our study and 
others have observed a gradual decline in total T cells 
[64]. Age most notably affects  CD8+ T cells, character-
ized by a loss of naïve  CD8+ T cells and gain of termi-
nally differentiated  CD8+ TEMRA cells (CD45RA+K
LRG1+CCR7−) [65]. Contrary to a previous study, our 
data showed that CD8_CTL in the elderly did not highly 
express KLRG1 but rather KLRD1 and KLRB1, both 
of which acted as immune inhibitory receptors on NK 
cells. Peripheral homeostatic proliferation of T cells in 
humans effectively maintains the naïve  CD4+ T cell pool, 
ensuring that  CD4+ T cells are only moderately affected 
by age [61]. The mechanism by which  CD4+ and  CD8+ 
T cells are affected differently by aging remains unclear. 
Recently,  CD4+ T cells with cytotoxic functions (CD4 
CTL) have been recognized for their significant roles 
in viral infections, autoimmune diseases, and cancers 
[35, 66, 67]. Hashimoto et  al. illustrated that CD4 CTL 
dramatically increased in supercentenarians, a cell type 
also found in elderly patients with bladder cancer [17, 
34]. Consequently, it is increasingly acknowledged that 
CD4 CTL have diverse functions and that their percent-
age is significantly associated with advanced age. On this 
basis, our results showed that CD4_CTL was detected 
in the peripheral blood of some adults, with a significant 
increase in the elders (60–110 yr), and the highest levels 
in supercentenarians (> 100 yr). We further discovered 
that the emergence of unknown_T subset in supercente-
narians may be contributing to a sustained high genera-
tion of CD4_CTL in this group of people.

Biological aging is a complex process characterized 
by progressive deterioration occurring simultaneously 
at multiple levels. This process is tissue-specific and can 
even vary from one cell to another [9]. Accurate meas-
urements to assess BA can be beneficial in capturing 
age-related physiological changes. Previous studies have 
developed numerous BA predictors through telomeres, 
epigenetic clocks, frailty, and other clinical biomark-
ers [68–71]. However, all these measurements remained 

at the individual level, which significantly obscures the 
differences at single cell level. Therefore, we proposed 
a novel single-cell level BA prediction model (PHARE) 
based on the changes in every immune cell. Similar to 
other age prediction models [11, 13, 14, 72], our approach 
also exhibits age difference between the predicted ages 
and the patients’ actual ages. Upon analyzing KD (rep-
resenting autoimmune diseases) and COVID-19 (repre-
senting infectious diseases) patient data, we consider the 
existence of age difference to be reasonable.

Collectively, our study has uncovered changes in 
immune cell function throughout the human lifespan, 
establishing a valuable reference for further research on 
aging. Our comprehensive analysis of the cell signaling, 
metabolism, differentiation, and functions of PBMCs 
provides an invaluable resource for the study of the aging 
process research, which will facilitate future precision 
treatments for diverse populations. Ultimately, we have 
developed PHARE into a user-friendly web tool (https:// 
xiazl ab. org/ phare), which will greatly assist users without 
programming skills to use it for research on large-scale 
age-related diseases. In the future, we will continuously 
update PHARE and include additional samples from 
healthy individuals for training to enhance the accuracy 
of age prediction even further.

Limitations of the Study
Our study has several limitations. One limitation of our 
study was the use of a cross-sectional dataset in which 
associations can be identified rather than causalities. 
Further follow-up studies are required to validate these 
findings. The healthy samples we included rely on the 
clinical information provided by the original studies. 
Although these samples were disease-free at the time of 
collection, their medical history and genetic background 
could still impact the function of their immune systems. 
Future studies should ideally establish a standardized def-
inition of health to uniformly select samples for analysis. 
In addition, sex-based differences in the immune system 
vary with age, and future studies need to include more 
samples to separate genders. Although we included data 
from multiple studies, we still did not define neutrophils. 
A possible reason is that the 10 × platform does not per-
form well on the capture rate of these two types of cells, 
and other single-cell sequencing platforms are required 
to explore these two types of cells in the future.

Materials and methods
Panage_data collection and integration
To fully cover PBMC data across human lifespan, we 
included three separate studies. We extracted PBMC 
data from healthy children [47] from Zhen Wang et  al.’ 
study (GSE168732), PBMC data from healthy teenagers 

https://xiazlab.org/phare
https://xiazlab.org/phare
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and adults [5] from Anjali Ramaswamy et  al.’ study 
(GSE166489), and PBMC data from healthy elders and 
supercentenarians [17] from Kosuke Hashimoto et  al.’ 
study (http:// gerg. gsc. riken. jp/ SC2018/) (Supplementary 
Table  1). Furthermore, we integrated cells into a shared 
space from different datasets for unsupervised clus-
tering and used the harmony algorithm to correct the 
batch effect [73]. To detect the most variable genes used 
for harmony algorithm, we selected high-variable genes 
separately for each patient by “FindVariableFeatures” 
function from Seurat package (version 4.0.6). A consen-
sus list of 2,000 high-variable genes was then formed by 
selecting the genes with the greatest recovery rates across 
patients, with ties broken by random sampling. Then, we 
ran Harmony with default parameters and integrated all 
datasets by using the “RunHarmony” function.

After dataset integration, the gene expression matrixes 
of all PBMCs were imported into Seurat v4 for subse-
quent analyses [74]. The following filtering steps were 
carried out to exclude low-quality cells: cells with fewer 
than 300 and more than 8000 detected genes were dis-
carded; cells with a high fraction of mitochondrial genes 
(> 10%) and hemoglobin genes (> 1%) were removed. As 
a result, a total of 159,671 cells (Cd: 16,025, Tg: 57,945, 
Ad: 31,759, Ed: 15,716, Sc: 38,226) with a median of 1,087 
genes were included in the further analyses. We applied 
SCTransform workflow (https:// satij alab. org/ seurat/) 
to analyze the scRNA-seq data with default parameters, 
which replaces the “NormalizeData”, “ScaleData” and 
“FindVariableFeatures” functions. Then, we performed 
a principal component analysis (PCA) dimensional-
ity reduction (RunPCA) and selected the first 30 PCs 
to construct a shared nearest neighbor (SNN) graph 
(FindNeighbors). To visualize the clustering results, the 
non-linear dimensional reduction was performed with 
the Uniform Manifold Approximation and Projection 
(UMAP) method, and cluster biomarkers were found by 
the “FindAllMarkers” function from the Seurat package.

External datasets mapping to Panage_data
To verify whether the cell types enriched in Tg group 
we identified in our origin datasets exist in other teen-
ager PBMC samples, we included another published 
teenager PBMC scRNA dataset in our analyses [42]. For 
using Panage_data as a reference tool to interpret other 
datasets, PBMCs from KD patients [47] and COVID-19 
patients [42] were included for further analysis. After the 
same data quality control, highly-quality immune cells 
were prepared for mapping to Panage_data. Then, marker 
genes common across a reference (Panage_data) and 
query (external datasets) were found by running FindAll-
Markers, and the top 30 PCs were selected for cell clus-
tering. Furthermore, we followed the tutorial (https:// 

satij alab. org/ seurat/ v4.0/ refer ence_ mappi ng. html) to 
map each donor dataset from the query individually. 
We used the FindTransferAnchors function with reduc-
tion = “pcaproject” and MapQuery function as the pre-
vious study described [75], and setting reduction = “pca” 
(as the documentation recommends for unimodal analy-
sis). Finally, all PBMCs from external datasets were anno-
tated according to our defined cell type.

Scores quantification of function in scRNA‑seq data
To score individual cells for Hallmark, KEGG, or other 
previously published functional pathway activities, we 
used multiple previously described methods to analyze 
different immune cell subsets. Firstly, the used human 
genes were from msigdbr (version 7.4.1) package, and 
gene sets were then used to score each cell. To elimi-
nate the bias of sample background, we selected gene 
set enrichment analysis methods based on single-cell 
gene expression ranking AUCell [76], UCell [77], sing-
score [78], and ssGSEA [79]. Of note, ssGSEA cancels the 
final standardization step, making it closer to the gene 
set enrichment analysis of a single cell. In addition, to 
evaluate whether the gene set is enriched in a certain cell 
subpopulation, we calculated the differential gene sets 
in the enrichment score matrix by Wilcox test (the filter 
criterion for differential genes is that the P-value after 
correction is less than 0.05). Finally, we used the rank 
aggregation algorithm (RRA) in the RobustRankAggreg 
package [80] (version 1.1.0) to comprehensively evalu-
ate the results of the different analyses, and screen out 
the genes that are significantly enriched in most gene set 
enrichment analysis methods Set (the filter criterion for 
comprehensive evaluation is P value less than 0.05).

Anti‑infection module score calculation
Module scores were calculated using the “AddModuleS-
core” function of Seurat with the default parameters. The 
anti-viral score consists of SIGLEC1, RABGAP1L, IFI27, 
CADM1, RSAD2, MX1, and SERPING1 [81]. The anti-
bacterial score consists of SMPD1, CD44, SERPING1, 
SPI1, HERC1, MCTP1, FOLR3, CFAP45, PRF1, CTBP1, 
HLA-DRB1, ARL1, OAS3, ZER1, CHI3L1, IFIT2, and 
IFITM1 [81]. The anti-microbial score consists of 463 
genes that come from ImmPort database [82]. The sepsis 
score consists of PLAC8, CLU, RETN, CD63, ALOX5AP, 
SEC61G, TXN, and MT1X [83]. Besides, to reveal the 
anti-infectious mechanism, Type_I_IFN and Type_II_
IFN related module scores were also calculated based on 
Rooney et al.’ study [84]. In these four anti-infectious fea-
tures, each patient has 25 cell types and each cell type has 
its specific score. For i-th patient, his/her patient’s score 
is calculated as follows:

http://gerg.gsc.riken.jp/SC2018/
https://satijalab.org/seurat/
https://satijalab.org/seurat/v4.0/reference_mapping.html
https://satijalab.org/seurat/v4.0/reference_mapping.html
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where sj is j-th cell type’s specific score, and αi,j denotes 
the proportion of the j-th cell of the i-th patient, 
satisfying:

Then the differences between groups are compared 
for each patient of groups, the differential features in 
the established score matrix by Wilcox test. Other indi-
cated functional gene sets used for cell annotation were 
extracted from IOBR (version 0.99.9) package [27].

Depicting cell global function using PROGENy
Given that many previous methods placed less empha-
sis on integrating responses from various cell types, we 
selected PROGENy to more accurately infer pathway 
activity from gene expression in heterogeneous samples 
[28]. This method can overcome both limitations by lev-
eraging a large compendium of publicly available pertur-
bation experiments to yield a common core of Pathway 
RespOnsive GENes. Specifically, PROGENy evaluated 
14 cell global functional pathways, which contained cell 
death, cell proliferation, cell metabolism, hormone sign-
aling regulation and several immune signaling. Therefore, 
we used this method to evaluate the indicated immune 
cell function of different age groups.

GO and KEGG enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were per-
formed by ClusterProfiler (version 3.18.0) package, using 
genes specifically upregulated in indicated cell types as 
the input gene list. GO/KEGG biological process terms 
with Bonferroni-corrected P values (FDR) < 0.05 were 
considered significantly enriched terms. The aPEAR (ver-
sion 1.0.0) package was used for clustering of enriched 
pathways and visualization. To cluster the differentially 
expressed genes, ClusterGVis (version 0.1.1) package 
was employed. Integration of the heatmap and functional 
enrichment analysis was also performed using the Clus-
terGVis package.

Geneset and pathway scores assessment
To assign pathway activity estimates to individual cells, 
we applied GSVA using standard settings, as imple-
mented in the GSVA package (version 1.42.0). For bulk 
RNA-seq data, we applied ssGSEA, as implemented 
in the IOBR package (version 1.0.0), to assess signature 
scores using the top 50 upregulated genes of indicated 
immune cell subsets (Supplementary Table 10). Gene Set 

25

j=1
sj · αi,j

αi,j ≥ 0,
∑25

j=1
αi,j = 1

Enrichment Analysis (GSEA) analysis was performed for 
each cell subpopulation using genesets (Hallmark) avail-
able at Molecular Signatures Database (MSigDB, https:// 
www. gseam sigdb. org/ gsea/ downl oads. jsp) or previously 
reported functional genesets [42] with default param-
eters. P values were adjusted using the Benjamini–Hoch-
berg method for the whole geneset list. Selected pathways 
shown in figure were manually curated to select genesets 
relevant to metabolism, infection and vaccine across the 
various differential expression comparisons.

Detection of differentiation states based scRNA‑seq data
Determining both the state and direction of cell differ-
entiation is tricky, while scRNA-seq offers a powerful 
method for reconstructing cellular differentiation trajec-
tories. Notably, CytoTRACE infers stem cell properties 
by scoring each cell based on its transcriptional diversity, 
establishing a novel RNA-based marker of developmental 
potential and providing a platform for delineating cellu-
lar hierarchies. [85]. Therefore, we used CytoTRACE to 
reveal the differentiation degree of each cell type, which 
indicated the ability to respond to new antigens. The raw 
expression matrix (counts) for different immune cell sub-
types was extracted and imported to the CytoTRACE 
package (version 0.3.3), and analyzed with default param-
eters. Then, the output CytoTRACE score for each cell 
was plotted with the “plotCytoTRACE” function, which 
visualized all cells in a low-dimensional embedding.

Mining metabolic activity using scMetabolism
To estimate the metabolic activity of individual immune 
cells among different age groups, the scMetabolism (ver-
sion 0.2.1) package was used developed by Yingcheng 
Wu et  al [86]. We chose the KEGG database (https:// 
www. genome. jp/ kegg/ pathw ay. html# metab olism) as the 
reference to quantify metabolic pathways in different 
cell types. In essence, selected KEGG metabolism path-
ways were generally divided into 6 categories (Amino 
acids, Lipids, Carbohydrates, Glycan, Cofactor/vitamin 
and Energy) according to the database recommenda-
tion. Considering VISION to be most appropriate for 
single-cell metabolism quantification among all methods, 
we evaluated the metabolism activity based on VISION 
score. Then, each metabolism activity was visualized 
using a modified “DotPlot.metabolism” function.

Similarity and correlation analysis
To measure the transcriptional similarity of T cell sub-
sets, we evaluated the expression values of all genes in 
the T cell. Briefly, ward.D2 method was applied for hier-
archical cluster analysis following Euclidean distance 
estimated by using the average expression of all genes. 
Then, spearman correlations were calculated between 

https://www.gseamsigdb.org/gsea/downloads.jsp
https://www.gseamsigdb.org/gsea/downloads.jsp
https://www.genome.jp/kegg/pathway.html#metabolism
https://www.genome.jp/kegg/pathway.html#metabolism
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the different T cell subsets and visualization was per-
formed by heatmap. For correlation analysis, the propor-
tions of different immune-cell subsets or pathway scores 
were first calculated. Then, the correlation coefficients 
between them were estimated based on Spearman.

Developmental trajectory inference of CD4_CTL cell
To characterize the developmental origins of CD4_CTL 
cells, we extracted unknown_T and CD4_CTL cells and 
imported them to the Monocle (version 2.14.0) software 
[87] to construct developmental trajectory. The signature 
genes were calculated by dispersionTable function, and 
further filtered out low-expressed genes based on their 
expression values. Then, the CD4_CTL cell differentia-
tion trajectory was inferred with the default parameters 
of Monocle after dimension reduction and cell ordering. 
After the cell trajectories were constructed, differentially 
expressed genes along the pseudotime were detected 
using the ‘‘differentialGeneTest’’ function.

The odds ratio for cell distribution preferences
To characterize the cell distribution preferences, the odds 
ratio (OR) was calculated and used to indicate this fea-
ture as previously described [88]. OR is a measure of how 
strongly an event is associated with exposure and a ratio 
of two sets of odds. We first assumed that the cell type 
was Ct and the group was g, and calculated the OR to 
evaluate the preferences between Ct and g. The Fisher’s 
exact test was applied to this contingency table, thus OR 
and corresponding p-value could be obtained. Specifi-
cally, we defined a higher OR with a value > 2 indicating 
that indicated cell type Ct was more preferred to dis-
tribute in group g. P-values were adjusted using the BH 
method using the R function “p.adjust”.

Diversity assessment based on immune cell composition
To compare the immune cell composition among dif-
ferent age groups, the frequency of immune cell meta-
clusters was calculated separately. Then a Shannon 
equitability index (normalized Shannon diversity index) 
was calculated, and the details were described as previ-
ously reported [88]. The high index indicated composi-
tion of the various immune cells is more diverse.

Physiological age prediction model construction (PHARE)
We developed a novel physiological age prediction 
model (PHARE) using PBMC single-cell transcriptome 
data from healthy individuals, leveraging a machine 
learning approach. The specific steps are as follows: 
First, we used a single-cell dataset Panage_data that 
had been pre-annotated with various immune cell sub-
types as a reference to train the Celltypist model [89]. 
The training process followed the standard procedure 

of Celltypist, which involves proportional sampling of 
each cell type from the reference dataset to enhance the 
ability to label rare cell types. Then, we used the trained 
model to label cell types across all other normal sam-
ples’ single-cell data. Ultimately, for each sample within 
all normal peripheral blood datasets (including the ref-
erence dataset), we calculated the proportion of each 
cell type and used these proportions as features to con-
struct a sample age prediction model. This prediction 
model is an ensemble of three machine learning tech-
niques: ’Random Forest’, ’Gradient Boosting’, and ’Ada-
Boost’, developed using the standard process of Sklearn 
[90].

Subsequently, we developed a process to use the afore-
mentioned trained model for physiological age prediction 
in samples at single-cell resolution and bulk resolution. 
For single-cell resolution transcriptome data samples, 
after cell type labeling using our trained Celltypist model, 
the ensemble model can directly provide age predictions 
(Fig.  6B). For bulk-resolution transcriptome data sam-
ples, we first employ cell type deconvolution technology, 
still using the pre-annotated single-cell dataset (Panage_
data) as a reference, to parse out the cell type proportions 
in bulk samples. Specifically: We first use the scanpy.
tl.rank_genes_groups function to calculate the up and 
down markers of the reference dataset; then, we retain 
markers unique to each cell type and use them with the 
intersection of genes contained in the bulk dataset as the 
reference genes for deconvolution; moreover, from the 
single-cell data, we calculate the average expression level 
of reference genes across each cell type to create a signa-
ture matrix; finally, we perform cell type deconvolution 
using the non-negative matrix factorization technique 
(NNLS), while providing NuSVR and Linear [91] meth-
ods as alternative options for deconvolution algorithms. 
Through this process, we input the deconvoluted cell type 
proportions into the ensemble model, thereby providing 
age predictions for bulk resolution samples (Fig. 6B).

Statistical analysis
Data are presented as means ± SEM, with the sample size 
per group provided in the respective figure legends. For 
bulk RNA-seq data, statistical significance was deter-
mined using a two-tailed Student’s t-test, while the Wil-
coxon test (wilcox.test) was applied for comparisons 
based on scRNA-seq data. Differences among multi-
ple groups were evaluated using the Kruskal Wallis test 
(kruskal.test). All bar graphs depict means with error 
bars representing data distribution. Significance levels 
are indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. P values < 0.05 were considered statistically 
significant.
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