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An evaluation of the recognised systemic
inflammatory biomarkers of chronic sub-
optimal inflammation provides evidence for
inflammageing (IFA) during multiple
sclerosis (MS)
Christopher Bolton

Abstract

The pathogenesis of the human demyelinating disorder multiple sclerosis (MS) involves the loss of immune
tolerance to self-neuroantigens. A deterioration in immune tolerance is linked to inherent immune ageing, or
immunosenescence (ISC). Previous work by the author has confirmed the presence of ISC during MS. Moreover,
evidence verified a prematurely aged immune system that may change the frequency and profile of MS through
an altered decline in immune tolerance. Immune ageing is closely linked to a chronic systemic sub-optimal
inflammation, termed inflammageing (IFA), which disrupts the efficiency of immune tolerance by varying the
dynamics of ISC that includes accelerated changes to the immune system over time. Therefore, a shifting
deterioration in immunological tolerance may evolve during MS through adversely-scheduled effects of IFA on ISC.
However, there is, to date, no collective proof of ongoing IFA during MS. The Review addresses the constraint and
provides a systematic critique of compelling evidence, through appraisal of IFA-related biomarker studies, to
support the occurrence of a sub-optimal inflammation during MS. The findings justify further work to unequivocally
demonstrate IFA in MS and provide additional insight into the complex pathology and developing epidemiology of
the disease.
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Introduction
Immunological tolerance, autoimmunity and the
epidemiology of autoimmune disease
An essential objective of the immune system is to differ-
entiate self (auto) from non-self (non-auto) via the ac-
quisition and maintenance of immunological tolerance
which directs host defences towards the neutralisation of
the potentially harmful effects of foreign antigens. The

concept of immune tolerance emerged at the turn of the
20th century through use of the term horror autotoxicus,
by Paul Ehrlich, to describe the ability of an organism to
distinguish self from non-self and thereby avoid injuri-
ous autoimmune reactions [1]. The notion of tolerance
became accepted during the 1960s and successive theor-
etical and practical contributions from several distin-
guished scientists eventually revealed the basic
mechanisms involved and the substantial importance of
their findings [2, 3]. For example, Bretscher and Cohn
[4] offered criteria to fulfil the theory of self-/non-self-
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discrimination and tolerance to auto-antigens while the
practical significance of immunological tolerance was
subsequently expounded by Brent [5] and referred to as
‘the holy grail of transplantation research.’
The origins of immunological tolerance incorporates a

central T cell/B cell response originating in primary
lymphoid organs and a separate T cell-biased reaction
within peripheral tissues that prevents autoimmune
events. However, there are occasions when the intricate
regulatory mechanisms that maintain immunotolerance
falter and, despite repeated efforts to restore equilibrium,
allow biomolecular auto-antigens to become misguided
targets for attack by an essentially protective but misa-
ligned immune system. A persistent, developing and dys-
regulated loss of immunological self-tolerance creates an
immune hyperresponsiveness and provokes pathological
autoimmune reactions that feature a predominant and
chronic inflammation which is sustained by thymus-
derived T lymphocytes, haematopoietic cells of the
monocyte-macrophage lineage and mediators that cause
tissue destruction.

Classification and epidemiology of autoimmune diseases
Unquestionably, long-term inflammatory diseases with a
previously undefined autoimmune aetiology, such as
rheumatoid arthritis (RA) and systemic lupus erythema-
tosus (SLE), were noticeably present well before the
knowledge and demonstration of tolerance or the under-
standing of immunological self and non-self [6–9]. Bene-
ficially, the theories and observations that emerged
around the acquisition and loss of immune tolerance
supported a fundamental characterisation of human dis-
eases with a recognised autoimmune profile as either
tissue-specific, and involving distinguishable autoanti-
gens, such as Type 1 diabetes, or systemic, which in-
cludes the inflammatory arthritides, and where the
distribution of autoantigen is widespread [10–12].
However, there remained a lack of quantitative infor-

mation on the disorders that qualified for inclusion
under the diagnostic title of autoimmune disease. In-
deed, and despite the acknowledged existence of auto-
immune illnesses prompting the development of
treatments [13], there was a persisting lack of definitive
data on either incidence or prevalence of disease until
the latter half of the 20th century. One particular and
serious concern arising from a retrospective analysis of
earlier studies viewed alongside more recent epidemio-
logical records is an undeniable and confirmed global
upsurge, over the last 30 years, in the proportion and
number of individuals with a diagnosed autoimmune
condition [14–16]. Moreover, estimates of future global
mean or period life expectancy have noticeably increased
during the current millennium [17] highlighting longev-
ity as central to the rise in incidence and prevalence.

Reports estimate that up to 10% of the world’s popula-
tion experience autoimmune-associated symptoms. In
detail, there has been a dramatic rise in diseases recog-
nised as having either a definitive or inferred auto-
immune pathology which includes a noticeable increase
in the female-to-male ratio [18, 19]. Furthermore, a
rapid escalation in the incidence of autoimmune disor-
ders is predicted to occur over the next few decades that
will undoubtedly have an important largescale effect on
the provision of worldwide health care [20]. In addition,
there is recognition that diseases with an autoimmune
aetiology have become a major cause of morbidity and
mortality.

The decline of immune tolerance with immune ageing
Loss of immune tolerance with the development of auto-
immune disease is a complex process originating from
an inability to maintain immunological self-recognition
through the failure of many immune cell-surface check-
point proteins, such as glycoprotein A repetition pre-
dominant (GARP), that are under genetic and molecular
regulation [21–23]. Although tolerance checkpoint mal-
function appears to adopt a stochastic course there is
evidence that the biological ageing process and, specific-
ally, immune ageing compromises the network of mo-
lecular safeguards which results in the development of
self-reactive immune cells and background autoimmun-
ity [24, 25]. Immune ageing, termed immunosenescence
(ISC) by Walford during the 1960s and more recently
named senescent immune remodelling or immunopause,
is generally defined as a gradual and subjective decline
of the immune system and host defence mechanisms
[26–28]. More precise observation confirms ISC to be
an inherent and natural remodelling process that is
genotype-dependent and sensitive to change following
various internal or external environmental exposures. In
particular, there is a progressive, multi-directional im-
munological restructuring of the innate and adaptive im-
mune systems which profoundly affects several aspects
of immunity including the development of immune tol-
erance and predisposition to age-related disease [29–35].
Age-linked reorganisation of immunity manifests as

quantitative and functional alterations to the essential
cellular and humoral constituents of the immune system
which impinge more on adaptive than innate mecha-
nisms [36, 37]. ISC-related changes to the innate im-
mune system include a fall in dendritic cell numbers and
a reduction in the proliferation and cytotoxic activity of
natural killer cells. The production of reactive oxygen
species is depleted in neutrophils and also macrophages
that, in addition, lose phagocytic and chemotactic cap-
acity and the potential for cytokine generation [31, 38].
Adaptive immune alterations appear more extensive
with variations in B cell numbers and B cell-dependent
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antibody responses, thymic involution, altered T cell
subset production and function that impinges memory
lymphocyte output, plus altered stem cell progenitor
production and disrupted signal transduction and co-
stimulatory circuits [39–41]. An appreciation of the sub-
stantial immunological changes that occur during ISC
and which particularly affect immune tolerance has im-
proved understanding of the prominent effects immune
ageing has on the incidence and severity of and the sus-
ceptibility to autoimmune disease [42, 43] (Figure 1).

Multiple sclerosis (MS)
Deteriorating immunotolerance during MS
One disease in which a loss of immune tolerance is a
prominent irregularity is the autoimmune-associated hu-
man central nervous system (CNS) disorder MS. Im-
munological failure to discriminate self from non-self
together with chronic CNS inflammation and untimely
alterations to adaptive immunity are key facets that pre-
dominate despite conjecture over the precise involve-
ment of the immune system in the disease [44]. In
particular and fundamentally, there is a primary break-
down of peripheral T cell tolerance to myelin-associated
antigens preceding an enduring, immune cell-driven in-
flammatory pathology that is responsible for the charac-
teristic demyelination and neurodegeneration which
causes gradual and varying disability [45–49].
Interestingly, the CNS was, for many years, considered

an immunologically privileged site principally because of
a restrictive neurovasculature and absence of lymphatic
vessels that supported an inherent ability to uphold im-
mune tolerance and, therefore, resist the instigation of a
local immune response [50]. However, the original view
was questioned and recent studies employing innovative
methods, including live imaging techniques, has rede-
fined the immunological relationship between the CNS

and periphery. For example, there is strong evidence for
specific interaction between brain lymphatics and per-
ipheral lymphoid tissues, together with lymphocyte sub-
set recruitment and resident mononuclear phagocytic
microglia participation, that confirms the CNS is not ex-
clusively privileged but subject to immunological scru-
tiny that, if disturbed, may threaten central tolerance
and contribute to the development of neurodegenerative
disease [51–54].
Therefore, immunological responsiveness in CNS tis-

sues provides an opportunity for central immune toler-
ance to be challenged and autoimmune reactions to
develop following a requisite initial antigenic sensitisa-
tion in the peripheral lymphatics [52]. In addition, the
undeniable presence of a destabilised immune tolerance
in the periphery and CNS during MS will, because of the
chronicity of the condition, be overlaid by ISC-linked
variations that alters adaptive immunity, at both sites,
with two-way effects on immune function through the
course of disease.

The history, diagnostic pathology, inherent causative
links and treatment of MS
Historical descriptions
A decline in immune tolerance coupled with the conse-
quences of an ageing immune system will have a cumu-
lative and enduring effect on the development and
progression of diseases with an autoimmune aetiology
that includes MS. However, and typical of many auto-
immune conditions, MS has an emerging, progressive
and distinctive pathophysiology with typical clinical pro-
files that allows ultimate diagnosis of a neurodegenera-
tive CNS disease. Historically, the first medical account
of a neurological condition with MS-like symptoms was
written by Augustus d’Este during the first quarter of
the nineteenth century followed, during the late 1830s,

Fig 1 Loss of immune tolerance in an ageing immune system. T cells /B cells in primary lymphoid organs plus peripheral T cells

express tolerance checkpoint proteins . Biological ageing-associated ISC causes a decline in immune tolerance. Self-reactive

immune cells develop and recruit inflammatory cells . Tissue-dependent autoimmune reactions and destructive mechanisms evolve
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by independent histopathological descriptions of the dis-
ease by Carswell and Cruveilhier [55, 56]. During the
mid-nineteenth century the French neurologist, Jean-
Martin Charcot, improved knowledge of the disorder
through detailed histological analysis of post-mortem
CNS tissues from MS patients. Furthermore, Charcot
detailed diagnostic measures and suggested causative
factors [57, 58].

Diagnosis and pathology
The intervening decades have provided opportunities for
considerable improvements in diagnosis and major ad-
vances in understanding the structural and functional
changes associated with the disease at cellular and
mechanistic levels. For example, the destruction of mye-
lin and the loss of oligodendrocytes at axonal sites is the
consequence of events that recruit haematopoietic cells
to form perivascular lesions which coalesce to create pla-
ques and, together with resident glia, generate a destruc-
tive inflammatory environment in areas of CNS white
matter. Magnetic resonance imaging techniques are rou-
tinely used to monitor plaque development and recent
improvements, including magnetisation transfer, detects
demyelinating events that are primarily responsible for
MS symptoms which range from visual disturbances and
ataxia through to limb weakness and paralysis [59].
Neurological signs vary according to the profile of dis-
ease which, from onset, may be either relapsing-
remitting that develops into a secondary progressive
condition or a more relentless primary progressive dis-
order. Immune cell-mediated inflammation is a predom-
inant feature of relapsing-remitting MS but is less
obvious in the chronic forms of disease which are more
characterised by pronounced neurodegenerative events
[60]. Unmistakably, and regardless of the disease pheno-
type, most MS patients experience a worsening of symp-
toms that occur over time and alongside a shifting
biological environment shaped by increasing age.

Genetic susceptibility and defective immune tolerance
MS is an idiopathic, age-related disease and, despite the
remarkable advances in our understanding of the condi-
tion plus the combined years of research dedicated to
furthering knowledge, a definitive cause remains elusive.
However, there is general agreement that a major influ-
ence on the autoimmune aetiology of the condition is a
close connection with the genetics determining predilec-
tion for disease [12]. Indeed, a series of important gen-
etic determinants linked to immune function exist
within the major histocompatibility complex (MHC) but
novel genome-wide association studies have identified
many non-MHC loci related to MS susceptibility [60,
61]. A major outcome of the investigations strongly indi-
cates a fundamental basis for MS, and indeed other

autoimmune-based diseases, resides in the polygenic in-
heritance of genes that confer susceptibility which, in
particular, includes a possible genetic link that allows a
propensity towards immune tolerance failure and
pathogenically-allied immune cell populations [62–66].

Therapies
Undoubtedly, the complex, chronic pathology associated
with MS and, to date, an incomplete understanding of
disease causation have, as typical of many other auto-
immune conditions, frustrated a cure and delayed ad-
vances in genuinely effective therapies. Nevertheless, the
past 30 years have witnessed important advances in the
treatment of MS with the development of disease modi-
fying therapies, symptomatic treatments and through at-
tempts to redress immunological tolerance. For example,
there are injectable agents including interferon-β and
glatiramer acetate (Cop-1), oral drugs such as dimethyl
fumarate and teriflunomide in addition to the huma-
nised monoclonal antibodies, natalizumab and alemtuzu-
mab [67]. Autologous hematopoietic stem cell
transplantation alters immunotolerance through measur-
able effects on immune function and provides some last-
ing benefit over the clinical disease course [49].
However, managing the symptoms of progressive disease
has proved more challenging with many candidate drugs,
including the neuroprotective agents amiloride and rilu-
zole, the monoclonal antibody, ocrelizumab, and other
immune cell-targeted therapies, at present, unavailable
for prescription while undergoing pre-clinical trials [68,
69].

Contemporary aetiological theories
Current progress towards new therapies are based on in-
novative methods that study brain networks from struc-
tural and functional imaging, evaluate immunological-
related risk variants that are single nucleotide polymor-
phisms and assess B cell-targeted small-molecules which
all derive from a number of concepts that have consid-
ered the basis of disease [66, 70]. For example, several
theories on the origins of MS have been proposed in-
cluding an unproven association with the measles virus,
a fundamental deficiency in vitamin D and an, as yet,
unsubstantiated link to the Epstein-Barr virus or viral in-
fection which is considered causal in other autoimmune-
related conditions including RA and SLE [71–76]. More
recently specific bacterial pathogens have been linked to
the development of neurodegenerative disorders, includ-
ing MS, which has led to a multiple hit hypothesis that
proposes genetic and environmental factors together
with infectious agents collectively contribute to disease
aetiology [77].
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The dynamics of and influences on ISC in MS
While work continues to improve the therapy for all MS
phenotypes and the search for a definitive cause goes on
there is a drive to understand the mechanisms under-
lying disease pathology through techniques including
quantitative imaging and proteomics and via world-wide
partnerships that encourage research and knowledge
transfer [78–80]. We recently published a Review as part
of the efforts to understand the immunological processes
ongoing during MS [81]. Collective evidence confirmed,
not unexpectedly, the inherent presence of an ageing
adaptive immune system in the disease. Moreover, and
unpredictably, the Review discovered and collated results
from several studies to strongly indicate premature ISC
over the course of the condition. We have suggested the
emergence and verifiable presence of premature ageing
of the adaptive immune system during the pathogenesis
of MS may effect epidemiological changes and underlie
the acknowledged rise in the number of adults and juve-
niles diagnosed with the disorder [81]. However, the
mechanisms that control immune ageing and, in particu-
lar, may accelerate ISC during MS are unknown.

ISC and an association with chronic, suboptimal
inflammation in autoimmune disease
Foreseeable and untimely ISC are becoming important
recognised features of other diseases with an auto-
immune profile including RA, SLE and psoriasis [82–
84]. Furthermore, the link between autoimmunity and
the dynamics of ISC appear closely associated with a
chronic and systemic low-grade inflammation, originally
termed inflammageing (or inflamm-aging) (IFA) [85],

which, in particular, impacts on adaptive immunity and
ultimately the effectiveness of immunological tolerance
through alterations in the rate of immune ageing [32, 34,
86]. Indeed, there is compelling evidence from additional
studies that IFA occurs coincidently with a premature
state of ISC and therefore has the potential to change
the course of autoimmune diseases and, as recently indi-
cated by us, the progression of MS [81, 87–89]. Also,
and by extrapolation, there is the possibility an acceler-
ated IFA occurs concurrently with inappropriate ageing
of the immune system.
Increased understanding of the strong inter-

relationship between ISC and IFA now regards ongoing
sub-optimal, asymptomatic inflammation as a corner-
stone of the biological ageing process (Figure 2). An ini-
tial trigger for IFA may include stressors that
incorporate long-term multi-antigenic exposure in the
presence or absence of a sub-clinical viral infection
which, in particular, has focussed on the persistent pres-
ence of the theorised candidate cytomegalovirus (human
β-herpesvirus 5) that forms part of the human β-
herpesvirus family [85, 90–95] The development of IFA
encompasses tissue-destructive and -restorative mecha-
nisms that are orchestrated, at least in part and at the
cellular level, by a senescence-associated secretory
phenotype, or SASP, comprised of various factors in-
cluding cytokines, chemokines and growth mediators
which persist on the background of ISC [96–98]. Hence,
there is continuous remodelling of tissues but an imbal-
ance between damaging and reparative systems prevails
because ongoing ISC has irretrievably evolved beyond
regulation within the environment of progressive

Fig. 2 The effects of stressor-induced IFA on the dynamics of ISC and immune tolerance. Inherent ISC, as a consequence of biological ageing,
influences the rate of immune ageing and immune tolerance. Stressor-activated IFA stimulates SASP release and prematurely accelerates ISC with
a decline in immune tolerance and an increased frequency of autoimmune disease.
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immune ageing. The consequence is a destructive
chronic sub-optimal inflammation which causes targeted
peripheral dysfunction and central disruption that may
include untimely immune ageing and CNS degenerative
disease [99, 100].
Therefore, IFA is viewed as an essential mainspring of

practically every major age-related inflammatory-
associated disorder, including RA and type-2 diabetes
and, specifically, a plausible component of the enduring
neuropathology that typifies MS. [101–103]. Moreover,
IFA may directly affect the development of the disease
through actions on ISC and, in particular, by increasing
the rate of immune ageing (Figure 2). However, and to
date, there is no collective evidence to support the pres-
ence of IFA during MS. Furthermore, without confirm-
ation of IFA involvement in the pathogenesis of MS a
connection with ISC and, moreover, untimely immune
ageing cannot be made.

Objectives and proposals
The purpose of the Review is to seek evidence for the
presence of IFA during MS through the collective ap-
praisal of studies that have quantitated biomarkers of
low-grade inflammation. Information supporting the oc-
currence of IFA will offer a broad mechanism that has
been shown to impact on immunological tolerance via
ISC and, specifically, premature immune ageing which is
notably evident during MS development and, as sug-
gested by us, of relevance to the changing epidemiology
of demyelinating disorders [81, 105].

Identification and quantitation of IFA-correlated
biomarkers
Acknowledged biomarkers of IFA
The broad definition of a biological marker, or bio-
marker, is an empirically quantifiable indicator of a nor-
mal biological process or pathological state [106].
Increased detection of a biomarker suggests exposure of
a biological system to harmful influences that threaten
physiological, biochemical or molecular actions. IFA is
linked to a cycle of pathophysiological changes, tissue
damage, mounting impairment of cellular and molecular
function with a loss of homeostasis that is perpetuated
by altered levels of several factors including acute phase
constituents and an assortment of cytokines and inter-
leukin (IL)-related molecules [107]. There is a critical
need for a clear and unanimously approved description
of the features that constitute IFA in health and with the
onset and progression of age-related disease. Recent de-
velopments have highlighted several putative biomarkers
of IFA including microRNAs that regulate gene expres-
sion and pathways linked to chronic low-level inflamma-
tion and senescence plus an altered cluster of
differentiation (CD) 4+/CD8+ ratio which we have shown

to be associated with immune ageing in MS [81, 102].
Encouragingly, the persistent and frequently extreme cir-
culating presence of inflammatory mediators associated
with IFA has resulted in a more precise classification, se-
lection and accreditation of several biomarkers that
characterise the ongoing sub-optimal inflammation and
related immune ageing that invariably accompanies dis-
eases with an unbalanced immunotolerance and an auto-
immune aetiology [92, 104, 108]. Hence, there is, to
date, no single, specific indicator of IFA but instead a
jointly classified collection of acknowledged biomarkers
that include the acute phase constituent C-reactive pro-
tein (CRP), the cytokine tumor necrosis factor-α (TNF-
α), IL-6 and IL-10 plus IL-1 receptor antagonist (Ra).

Developing and refining the measurement of biomarkers
that denote IFA
The elaborate pathology of MS occurs along with the
variable production of many cytokines that are generated
by an interactive network incorporating cellular constit-
uents of the systemic immune system and resident in-
flammatory cells of the CNS [109]. A general
observation from a recent and comprehensive meta-
analysis has indicated that quantitation of cytokines in
blood and CSF sampled from MS patients may be useful
biomarkers of the disease [110]. Fundamental to the Re-
view is the specific and joint appraisal of data measuring
the concentrations of recognised biomarkers of IFA dur-
ing MS in order to assess the potential for an enduring
low-grade inflammation that may vary ISC, deregulate
immune tolerance and alter the incidence and pathogen-
esis of disease. Therefore, an appreciation of pre-
analytical procedures and methodologies used to quanti-
tate and classify the inflammatory indicators is essential
to aid critical scrutiny of results and conclude on the
prospect of ongoing IFA during MS.
For example, systematic study of the literature has

provided an understanding that separate, repeated and
objective measurement of each inflammatory mediator
by increasingly accurate quantitative techniques, quality
control and proficiency testing procedures has allowed
individual profiles to become the jointly approved bio-
markers of altered immune conditions that encompass
IFA [111–113]. In addition, there has been an increasing
realisation that the established immune indicators, in-
corporating those linked to low-grade inflammation, do
not function autonomously but operate as an inter-
dependent network and therefore should be quantitated
simultaneously which has promoted the use of single
sample, multiple biomarker analysis [114].
Specifically, quantitation of the 5 approved inflamma-

tory biomarkers of IFA in blood- and cerebrospinal fluid
(CSF)-derived samples from MS patients and controls
has progressed over the last 20 years and benefited from
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the improvements in analytical practices. Consequently,
the intrinsic difficulties in precisely measuring concen-
trations of inflammatory mediators in body fluids during
the development of MS have been largely eliminated by
improvements in collection and storage procedures, stat-
istical requirements plus the advent of more sensitive
and standardised techniques such as enzyme-linked im-
munosorbent assay (ELISA) and multiplex technology
which includes the electrochemiluminescence-based
Meso-Scale Discovery platform and the Lumiex multi-
analyte platform systems [114–122]. In addition, there
has been a realisation that immune biomarker concen-
trations during inflammatory conditions such as MS
may change with increasing age and independent of dis-
ease which necessitates the inclusion of age-matched
controls. Also, indicator levels may fluctuate according
to circadian and seasonal rhythms [114, 116, 123, 124].

Criteria for evaluation of the recognised
biomarkers of IFA during the pathogenesis of MS
There has been, over the last 2 decades, a determined and
progressive approach towards the standardisation of analyt-
ical procedures that, in particular, measure the now-
recognised biomarkers of IFA. Therefore, a date-dependent
boundary has been defined that creates a point from which
to begin a detailed and regulated assessment of data investi-
gating the participation of an ongoing low-level inflamma-
tion in the pathology of MS. The Review has assessed
results from experiments that have determined the circula-
tory level of each IFA-associated biomarker in MS patients
and controls. Specifically, only studies recording significant
changes in the concentrations of the individual biomarkers
detected in MS patients, compared to controls, have been
included in the analysis. Additional criteria for the evalu-
ation and inclusion of quantitative biomarker measure-
ments has endeavoured to exclude analysed samples from
MS patients receiving drug therapy and include observa-
tions that incorporate comparative control values from sub-
jects with non-inflammatory neurological diseases.
Furthermore, the recognised and continuous biological
interface between systemic immunity and the CNS has
been broadened to include support for a progressive IFA in
normal and diseased ageing brain tissue that is also linked
to ISC and neurodegenerative events [103, 125]. Therefore,
data has been independently considered from sampled
blood and cerebrospinal fluid (CSF) to distinguish the rep-
resentative IFA-associated biomarkers in peripheral and
central compartments that denote circulatory and CNS
suboptimal inflammation.

IFA-correlated biomarkers in MS
IL-6
The multifunctional cytokine, IL-6, consists of 212
amino acids and a core molecular mass of approximately

20 kilodaltons (kDa). The cytokine is rapidly induced
and ubiquitously present following tissue disruption or
inflammation resulting from injury or infection which is
invariably typified by the detection of upper ng/ml levels
in the circulation [126–131]. IL-6 holds an important
central position in pivotal immune and inflammatory re-
sponses through participation in acute phase reactant
production that includes hepatocyte-derived CRP, the
regulation of bone marrow-located haematopoiesis and
immune cell differentiation which, for example, deter-
mines B cell activation, effector T cell development and
immunological tolerance. The biological activity of IL-6
is conveyed via an intracellular signalling system that in-
volves membrane-bound and soluble IL-6 receptor occu-
pancy by the cytokine followed by interaction with the
β-receptor glycoprotein130 transducer [132]. Various in-
vestigations have implicated the cytokine in the patho-
genesis of cancers and chronic autoimmune diseases
including RA and MS and IL-6 blockade has proved
highly effective in the treatment of inflammatory- and
immunological-based diseases [133–135].

Systemic IL-6 concentrations
There are many reports of raised IL-6 levels in the sera
of MS patients despite studies to the contrary describing
no quantitative differences from control values or low
level detection together with measurement of the cyto-
kine in only a small percentage of patients [136–142].
Indeed, significantly high levels of IL-6, in the pg/ml
range, have been confirmed in sera from MS patients
with relapsing-remitting disease, during relapse and in
association with established neurological disability [143–
146]. In addition, patients with progressive but clinically
stable MS had raised serum IL-6 concentrations which
contrasted with lower levels when disease was ongoing
[147]. Moreover, gender differences have been noted
with higher concentrations recorded in samples from di-
agnosed females [148, 149]. Also, increased quantities of
IL-6 have been verified in sera from MS patients experi-
encing depressive illness [150, 151].

CSF IL-6 levels
Several studies assaying IL-6 in CSF have reported un-
detectable levels, low concentrations or no measurable
differences compared to controls [136, 138, 140, 141,
152–154]. Also, there are reports that the cytokine is
present in only a small number of MS patients or lower
and occasionally reduced when compared to other
neurological diseases [120, 137, 142, 155]. In contrast,
many investigations have recorded raised IL-6 CSF levels
in MS patients and, more strikingly, when the severity of
neurological disease has been defined [145]. For ex-
ample, the relapse phase of MS is characterised by ele-
vated quantities of the cytokine [156–159]. L-6 is also
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higher in clinically evident but stable disease and in-
creases coincide with new pathology in the CNS [10,
161]. Moreover, there appears to be a temporal relation-
ship between MS and IL-6 with high concentrations de-
tected during the progression or in association with the
duration of the condition and in protracted undiagnosed
disease [143, 161, 162]. Therefore, the analysis suggests
IL-6 levels in MS patients with undefined neurological
symptoms are similar to control values but reveals that
concentrations become noticeably altered when matched
with the category of neurological disability. Furthermore,
the finding may be relevant to revealing disparities in
the levels of the other defined biomarkers of IFA and,
indeed, any inflammatory mediators identified as im-
portant in the pathogenesis MS.

CRP
The pentraxin, CRP is one of several acute phase reac-
tants that are produced by hepatic tissues after specific
receptor activation by a range of stimuli including the
cytokines IL-1 and IL-6 in response to injury, infection
or inflammation [163–165]. The protein, so named be-
cause of the ability to react with the somatic c-
polysaccharide of Streptococcus pneumoniae, exists
in vivo in pentameric and monomeric forms. Normal
circulatory levels of CRP, determined by increasingly
sensitive techniques, are less than 1μg/ml but may reach
levels in excess of 1mg/ml during inflammatory episodes
[118, 166]. A number of functions have been assigned to
CRP including a regulatory role in inflammation through
activation of the complement pathway and via Fc recep-
tor occupation that is essential for immune defences
[167]. Interestingly, low levels of the acute phase react-
ant that exceed baseline values may be associated with
the biological ageing process [168] and a recent study by
Jimenez et al [169] has suggested an important role for
the protein in regulating age-linked alterations to adap-
tive immunity and immune tolerance.

Circulatory CRP concentrations
Many studies have monitored circulatory CRP levels in
the various clinical sub-types of MS with the typical and
defining pathophysiology at the time of sampling. For
example, plasma and serum concentrations of the pro-
tein were measured in clinically undifferentiated MS pa-
tients and over the course of relapsing-remitting disease,
during a remission plus the progressive form of the dis-
order and were within normal limits [170, 171]. In con-
trast, early and many more recent studies have detected
increased serum levels of the protein in relapsing-
remitting MS patients, during a clinical remission,
through primary and secondary progressive disease and
also in pregnant women with the disorder [172–179]. In
addition, noticeably higher concentrations of CRP were

detected at the onset of disease in young subjects com-
pared to individuals showing initial symptoms at an
older age [180]. Also, supplementary work has suggested
an association between circulatory CRP levels and the
inflammatory pathology plus blood-brain barrier distur-
bances characteristic of MS [181].

CSF CRP levels
In contrast to the studies measuring systemic amounts
of CRP in MS patients there is a distinct absence of data
relating to levels in CSF but a singular increase has been
confirmed in samples taken during active disease [179].
Notably, the appraised levels of CRP in systemic and
CNS-related samples were in the pg/ml range and there-
fore, not symptomatic of acute inflammatory events or
accompanying infections but indicative of an underlying
and ongoing inflammation.

TNF-α
Cytotoxicity to tumor cell lines was an early recorded
activity of the cytokine TNF-α, formerly known as
cachectin, that is produced by a variety of haemopoietic
cells including monocytes, macrophages, T lymphocytes
and B cells and, in the CNS, by glial cells and neurons
[182]. TNF-α, has a diverse and sometimes opposing
range of biological actions that include the maintenance
of homeostasis and the development of disease patho-
genesis that, in particular, feature the immune system
and inflammatory processes. The cytokine is synthesised
as a bioactive 26 kD transmembrane protein precursor
that can be modified, by TNF-α-converting enzyme, to
generate a 17-kD soluble form that acts locally or at sites
distant from production [183]. The biological roles of
TNF-α are primarily conveyed through transmembrane
protein receptors, designated TNF-receptor 1 and TNF-
receptor 2, that reside on numerous types of nucleated
cells with expression of the latter receptor more regu-
lated and restricted to immune cells, the endothelium
and neurons. Binding of TNF-α to TNF-receptors 1 and
2 activates complex signalling cascades that have pro-
found effects on cell function to regulate proliferation,
survival and programmed death. Normal systemic levels
of TNF-α are typically in the low pg/ml range but fre-
quently reach considerably higher concentrations in in-
flammatory and infectious diseases [184].

Circulatory TNF-α levels
There are a few reports of no differences in serum TNF-
α concentrations between MS patients with newly diag-
nosed or long-term disease and controls [138, 141, 185,
186] but data from an overwhelming number of studies
show large differences ranging from pg/ml to ng/ml
levels of the predominantly pro-inflammatory cytokine.
For example, raised amounts of TNF-α were detected in
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plasma and sera from MS patients with established dis-
ease [120, 139, 146, 171, 187–192] and in clinical sub-
types of the condition. Indeed, levels were increased in
relapsing-remitting and secondary progressive MS and
were particularly high during primary progressive dis-
ease compared to the other defined categories [176, 180,
193, 194]. Moreover, elevated concentrations were de-
tected during relapse and were sometimes in excess of
values in the remission phase of disease which have also
been shown to vary compared to controls [195–199]. In
addition, increased amounts of TNF-α in plasma and
serum samples have been found to correlate with clinical
episodes of disease, an increase in neurological deficits
and enhanced lesion load particularly in patients with
primary progressive MS [144, 147, 179, 194, 200, 201].

CSF TNF-α concentrations
Quantitation of TNF-α in CSF sampled from verified
but clinically undifferentiated cases of MS and newly di-
agnosed patients have confirmed values similar to con-
trols [120, 137, 138, 141, 145, 152, 186]. In contrast,
several studies have identified raised ng/ml levels of
TNF-α in CSF from patients with established MS [103,
154, 188]. Moreover, concentrations of the cytokine
were high in progressive MS, [202, 203] during clinically
apparent disease [179, 195] following initial diagnosis
and later development of disease [204]. CSF TNF-α con-
centrations were also increased in relapsing and second-
ary progressive disease compared to levels in the
remission phase [187].

IL-1Ra
Initially, the 17 kDa polypeptide IL-1Ra was recognised
as a suppressor factor of IL-1-mediated thymocyte pro-
liferation and subsequent investigations revealed an
overall ability to curtail IL-1 bioactivity [205]. IL-1Ra
competitively inhibits the ubiquitous cellular receptor
IL-1R type 1 by competing with IL-1α and IL-1β to
block the signalling processes leading to the release of
and interaction between mediators that determine sys-
temic inflammation [206]. The anti-inflammatory prop-
erties of IL-1Ra have been successfully duplicated in a
human recombinant, non-glycosylated version,
expressed in Escherichia coli, and named Anakinra
which has been approved for the treatment of arthritis
and other members of the arthritidies family [207].

Systemic and CSF IL-1Ra levels
There is minimal information on serum and CSF con-
centrations of IL-1Ra in MS patients not receiving ther-
apy. Heesen et al [208] recorded high serum levels,
compared to controls, in active disease and during clin-
ically stable episodes. Values were also increased, to
upper pg/ml concentrations, in progressive MS as

opposed to patients with relapsing-remitting disease. In
contrast, later studies in a sample of clinically undefined
MS patients found amounts in serum were similar to
controls. However, the investigation did detect signifi-
cantly raised quantities in CSF taken from the patients
[209]

IL-10
Down-regulation of the inflammatory process is a major
property of the cytokine IL-10, originally known as cyto-
kine synthesis inhibitory factor, which is released from a
variety of peripheral immune cells, including macro-
phages, B cells and T cell subsets, and expressed by glia
and neurons in the CNS [210]. IL-10 exists as a 35 kD
molecule and exerts anti-inflammatory effects via oc-
cupation of an individualised cellular transmembrane
glycoprotein receptor complex that activates to in-
hibit several inflammatory-linked cytokines, including
TNF-α and IL-6, and stimulates the augmented re-
lease of IL-Ra [211]. In addition, IL-10 receptor acti-
vation disrupts antigen presentation by reducing cell
surface expression of the MHC plus co-stimulatory
and adhesion molecules together with CD4+ T cell
proliferation.

Systemic IL-10 levels
Several reports have found the levels of IL-10 in serum
and plasma from newly diagnosed MS patients and those
with more established disease to be within the range of
controls [140, 141, 145, 192]. In contrast, there are vari-
ous studies that have described significantly increased
concentrations of IL-10, at pg/ml levels, in blood and
serum sampled from MS patients and, in particular,
taken during remission, and in conjunction with the
neurological changes accompanying relapsing-remitting
and progressive disease [139, 147, 177, 191, 196, 212].

CSF IL-10 concentrations
Limited early and later work measuring IL-10 concentra-
tions in CSF from MS patients found no differences
compared to controls [141, 152, 213]. However, a com-
plementary series of studies found an opposing profile
which revealed elevated IL-10 levels, at pg/ml concentra-
tions, in CSF from MS patients including samples ob-
tained during relapsing-remitting disease [145, 154].
Also, increased amounts of the cytokine were detected
with recent diagnosis and during apparent ongoing
neurological symptoms [103, 179, 209].

Summary and critique of biomarker-based
evidence for IFA during MS
A significant change in the systemic levels of CRP, IL-6,
TNF-α, IL-1Ra and IL-10 are defined indicators of IFA.
The Review has established, from joint appraisal of the
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literature, that the majority of studies designed to meas-
ure concentrations of the classified IFA-associated bio-
markers in sampled blood and CSF from MS phenotypes
have recorded significant alterations compared to con-
trol values. Noteworthy, the reports describing signifi-
cant changes for each IFA-associated biomarker and
expressed as a percentage of the total number of studies
(Table 1) excludes investigations that detected noticeably
increased, but not significant, circulating levels of some
biomarkers in samples from MS patients compared to
controls. Interestingly, and despite the absence of signifi-
cant variation, the sampling of MS patients with raised
biomarker levels may have coincided with an activated
state of IFA that had either not optimised or had peaked
and was in decline. In addition, the low-level increase of
each biomarker is representative of a sub-optimal in-
flammatory response and not an acute inflammatory ef-
fect where recorded levels of reactants, including CRP,
IL-6 and TNF-α, are typically and markedly raised [214,
215]. Therefore, the Review has evaluated and presented
sufficient collective evidence to indicate the occurrence
of IFA over the course of MS and, more specifically, dur-
ing typical clinically-distinct phases of the disease.
Evaluation of the studies also revealed the intricacies

of biomarker quantitation in an age-related disease that
includes several clinical categories and a protracted
pathophysiology. The mechanisms governing acute
phase reactant and cytokine production and availability
during inflammatory responses and at sampling time are
complex with a reliance on mutual interaction and a
profile of transitory release [155, 216, 217]. Collective
appraisal of the data also suggests an interconnected
regulation of the biomarkers that includes an inverse re-
lationship between the levels of pro- and anti-
inflammatory mediators. In addition, and with particular
reference to MS, the physiological distribution of the in-
flammatory mediators is often restricted which hinders
identification and, despite upregulation of the analogous
receptors, may not be generated in sufficient amounts
for detection [218, 219]. Also, there is an emerging

opinion that an inherent IFA process may impinge on
systems that determine inflammatory indicator levels
and obscure differences between healthy and disease
states. For instance, Hu et al [103] found the CSF con-
tent of TNF-α in healthy subjects increased linearly with
age. In contrast, IL-10 concentrations were higher in
samples from young and old individuals, compared to a
middle-aged group, which generated a non-linear U-
shaped distribution of data with a lower detection at the
centre of the range.
The biological and disease-related dynamics associ-

ated with the measurement of inflammatory media-
tors may help to explain the disparity between
investigations that detected normal and elevated levels
of the IFA biomarkers. In addition, differences in ex-
perimental design and methodology may contribute
to variances between groups. For example, and col-
lectively, much of the work incorporated small and
unequal sample sizes together with asymmetrically
distributed data that would alter statistical power, as
acknowledged by Wullschleger et al [155], who mea-
sured IL-6 concentrations in CSF taken from patients
with MS and other neurological inflammatory dis-
eases. In addition, the studies detailed measurements
obtained from several contrasting techniques includ-
ing ELISA, fluorescent-activated cell sorting analysis
and multiplex systems with variable limits of detec-
tion for each biomarker.

Conclusions and guidelines
The Review has presented compelling evidence from a
range of quantitative inflammatory-associated biomarker
studies that supports the presence of IFA during the
pathogenesis of MS. Moreover, the occurrence of IFA is
confirmed in all clinical sub-types and neurological
phases of the disease. Notably, there is general agree-
ment that the variable chronic inflammation, which de-
clines with age and disease duration, is confined to the
central nervous system CNS [60, 220]. Therefore, the
IFA-related biomarkers detected at significant concen-
trations in the majority of serum-derived samples from
MS patients probably originate from circulatory inflam-
matory cell components than constituents of the CNS.
Also, the biomarker-associated systemically-located in-
flammation may be secondary to the chronic and pri-
mary facilitator of disease in the CNS. Indeed, the
enduring CNS-restricted inflammation has been ob-
served in acute white matter lesions and as part of a re-
active process which may be ancillary to a principle
neurodegenerative process [221, 222]. Consequently, the
marginal majority of significantly raised IFA-associated
biomarkers in CSF from MS patients may reflect the
sustained presence of a sub-optimal inflammation that
subtly drives the disease particularly in the established

Table 1 The number of studies and the percentage (%)
detecting significant change in systemic levels of IFA-related
biomarkers.

IFA biomarker Number of studies/% detecting significant change

Serum/Plasma CSF

IL-6 18/60 21/52

CRP 14/71 a

TNF-α 30/87 16/56

IL-1Ra 2/50 2/50

IL-10 10/60 8/63
a One study [179] confirmed a raised level of CRP that was not significantly
different from control values.
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and increasingly progressive stages that develop with in-
creasing age.
Previously discussed and referenced findings have ac-

knowledged that the chronic systemic sub-maximal in-
flammation typifying IFA is coincidental with ISC and,
in particular, linked with a premature ageing of the
adaptive immune system which impacts on the efficiency
of immunological tolerance. Earlier observations by us
confirmed ISC and demonstrated an untimely ageing of
the immune system in MS which was suggested causal
to the recognised increase in the incidence and preva-
lence of the disease. Therefore, the verified occurrence
of IFA during MS accompanies an age-dependent re-
modelling of the immune system that provides an inter-
active relationship through which unfavourably-timed
alterations to immune ageing and immunological toler-
ance may proceed.
Further specific biomarker-related work is required

to strengthen and develop the concept of IFA on-
going in MS and define the relationship with the pro-
cesses of ISC and immune tolerance. A guide to
prospective studies is offered through a variety of
analogous investigations that provide valuable infor-
mation on putative intrinsic and extrinsic stressors
triggering IFA through diverse actions on the innate
and adaptive immune system [223–228]. Moreover,
and as illustrated in immune-related, age-associated
comparative work, there is an important requirement
for longitudinal IFA biomarker studies to assess indi-
cator levels with increasing age in healthy controls
and patients with MS and other neurological diseases
[229–231]. The comparative investigations also pro-
mote understanding of the mechanisms that challenge
the dynamics of age-related immune remodelling and
disrupt immune tolerance which is prominent in
autoimmune-based diseases such as MS.
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