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Abstract

With the ageing of the world population, osteoporosis has become a problem affecting quality of life. According to
the traditional view, the causes of osteoporosis mainly include endocrine disorders, metabolic disorders and mechanical
factors. However, in recent years, the immune system and immune factors have been shown to play important roles in
the occurrence and development of osteoporosis. Among these components, regulatory T (Treg) cells and T helper 17
(Th17) cells are crucial for maintaining bone homeostasis, especially osteoclast differentiation. Treg cells and Th17 cells
originate from the same precursor cells, and their differentiation requires involvement of the TGF-β regulated signalling
pathway. Treg cells and Th17 cells have opposite functions. Treg cells inhibit the differentiation of osteoclasts in vivo and
in vitro, while Th17 cells promote the differentiation of osteoclasts. Therefore, understanding the balance between Treg
cells and Th17 cells is anticipated to provide a new idea for the development of novel treatments for osteoporosis.
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Introduction
Osteoporosis is a systemic bone disease characterized by
a decrease in the bone mineral content and destruction
of the bone microstructure, which increases the fragility
of bone and the incidence of fracture [1]. According to
the traditional view, the occurrence of osteoporosis is as-
sociated with endocrine disorders, metabolic disorders
and mechanical factors, especially oestrogen deficiency.
However, osteoporosis is also considered a chronic in-
flammatory bone disease [2]. In recent years, research
on the pathogenesis of osteoporosis has been extended
to address the interaction between the skeletal system
and the immune system. Many studies have demon-
strated that immune disorders can cause many skeletal
diseases [3]. Since Arron and Choi proposed the concept
of osteoimmunology in 2000, this cross-disciplinary field
has attracted great interest and attention [4].
In this review, we introduce the correlation between

bone loss and Treg cells as well as Th17 cells. In addition,

the impact of the balance between Treg cells and Th17
cells on osteoporosis is presented. Moreover, we
summarize the relevant factors that affect the Th17/Treg
cell balance, aiming to provide new ideas for the treatment
of osteoporosis in the future.

Immunological factors of osteoporosis
Osteoporosis patients usually show an increase in bone
turnover, which leads to an imbalance of bone resorption
and bone formation [1]. Bone development is a process of
dynamic balance that is achieved by bone remodelling.
Bone remodelling is a process during which bone function
constantly adapts to changes in mechanical and physio-
logical stress. It can allow the shaping and repair of bone
morphology [5, 6]. Osteoblasts and osteoclasts play a
major role in bone remodelling, and any imbalance be-
tween them causes various metabolic bone diseases [5]. In
recent years, many studies have confirmed that immune
cells can interact with osteoblasts and osteoclasts to regu-
late bone formation and resorption and that macrophage
colony-stimulating factor (M-CSF) and receptor activator
of nuclear factor-kB ligand (RANKL) act as a bridge
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between the immune system and bone system [7].
Osteoclasts, originating from haematopoietic stem
cells, are multinucleated cells formed after the fusion
of precursor cells of the monocytic lineage. Induction
of osteoclast formation requires M-CSF and RANKL
[8]. In the process of bone resorption, RANKL acti-
vates the nuclear factor-kB receptor activator (RANK)
receptor on the membrane surface of osteoclast pre-
cursor cells and osteoclasts, which leads to the forma-
tion and activation of osteoclasts, thus affecting bone
remodelling [9]. M-CSF promotes the proliferation
and survival of osteoclast precursor cells mainly by
activating extracellular signal regulated kinase (ERK)
via growth factor receptor binding protein 2(Grb2)
and protein kinase B (Akt) via phosphoinositide 3
kinase (PI3K) [10]. T cells account for approximately
5% of bone marrow cells in the bone marrow stroma
and parenchyma. T cells can differentiate into CD4+

T cells and CD8+ T cells. Naive CD4+ T cells can dif-
ferentiate into Th1, Th2, Th9, Th17, Th22, and Treg
cells and follicular helper T (Tfh) cells [3]. Th17 cells

and Treg cells play important roles in maintaining
bone homeostasis, especially in osteoclast differenti-
ation (Fig. 1) [11].

The relationship between Treg cells and bone loss
In 1995, Sakaguchi et al. first discovered Treg cells in
the study of autoimmune diseases in mice [12]. Since
then, Treg cells have become a hotspot of research on
autoimmune diseases, tumours and other diseases. Treg
cells mature in the thymus. Interleukin-2 (IL-2) plays an
important role in the survival and development of Treg
cells. Foxp3, a member of the forkhead box family of
transcription factors, is currently recognized as a specific
identification marker of Treg cells and is also an essen-
tial molecule for the development and functional expres-
sion of Treg cells [13]. Treg cells are mainly divided into
two categories: naturally occurring Treg cells (nTregs)
and induced Treg cells (iTregs). nTregs exist naturally in
the thymus, and iTregs are generated from naive T cells
in peripheral lymphoid tissues under stimulation by self-
antigens [14]. M-CSF and RANKL, which induce the

Fig. 1 CD4+Treg cells affect the bone include cell contact-dependent mechanisms and inhibitory cytokine inhibition mechanisms. CD4+Treg cells
can promote the proliferation and differentiation of osteoblasts by secreting TGF-β and activating intracellular effectors such as MAPK and Smad-
related proteins that induce mesenchymal stem cells to differentiate into osteoblasts and promote the proliferation and differentiation of these
osteoblasts. CD8+Treg cells can inhibit the maturation and activity of osteoclasts by suppressing the formation of their actin rings. Simultaneously,
in the bone marrow, the unique property of osteoclasts to induce CD8+Treg cells and the ability of CD8+Treg cells to regulate osteoclast function
established a bi-directional regulatory loop between the two types of cells. Th17 cells express high level of RANKL on its surface, which binds to
RANK on the surface of osteoclast precursor cells, promoting the development of osteoclast precursor cells to osteoclasts to accelerate bone
absorption. Th17 cells also can secrete IL-17 which directly enhances the expression of RANKL in osteoclastogenesis-supporting cells
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differentiation of osteoclasts are produced under the action
of immune cells, bone marrow stromal cells, osteoblasts
and fibroblasts [7]. Treg cells have immunosuppressive
functions. They can inhibit the production of osteoclasts by
preventing the production of RANKL and M-CSF, leading
to an increase in bone mass [15]. Studies have shown that
the main mechanisms through which Treg cells affect bone
include cell contact-dependent mechanisms and inhibitory
cytokine inhibition mechanisms [16]. Recently, it has been
pointed out that nTregs mainly inhibit the production of
osteoclasts through a cell contact-dependent mechanism,
while the inhibitory effect of iTregs occurs through an in-
hibitory cytokine-dependent mechanism [6]. Cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) is an important
surface molecule involved in Treg cell-mediated cell
contact-dependent inhibition of osteoclast generation [17].
Treg cells expressing CTLA-4 bind to CD80/CD86 on the
surface of osteoclast precursor cells and induce the activa-
tion of indoleamine-2,3-dioxygenase in osteoclast precursor
cells. Activated indoleamine-2,3-dioxygenase can degrade
tryptophan, promote the apoptosis of osteoclast precursor
cells, and thus inhibit bone resorption [18]. In addition to
triggering immunosuppression through direct contact be-
tween cells, Treg cells can also secrete inhibitory cytokines
that have indirect immunosuppressive activity. IL-10 is one
of the inhibitory cytokines secreted by Treg cells and can
inhibit the proliferation of T cells and the production of cy-
tokines by T cells. IL-10 can inhibit the differentiation and
maturation of osteoclasts by upregulating the secretion of
osteoprotegerin (OPG) and downregulating the expression
of RANKL and M-CSF [5, 19]. IL-35 is a newly discovered
cytokine secreted by Treg cells that can reduce the expres-
sion of IL-17, thereby reducing the progression of collagen-
induced arthritis in mice [20]. It has been demonstrated
that after injection of mice with Treg cells that were ampli-
fied and purified in vitro with magnetic beads and coated
with anti-CD3 and anti-CD28 antibodies, the expres-
sion of cytokines inhibiting osteoclast generation, such
as granulocyte-macrophage colony-stimulating factor
(GM-CSF), interferon-γ (IFN-γ), IL-5 and IL-10, in-
creased significantly in the mice [17, 21]. In addition,
evidence has shown that Treg cells also have certain ef-
fects on osteoblasts [22]. Treg cells can promote the
proliferation and differentiation of osteoblasts by se-
creting TGF-β and activating intracellular effectors
such as mitogen activated protein kinase (MAPK) and
Smad-related proteins that induce mesenchymal stem
cells to differentiate into osteoblasts and promote the
proliferation and differentiation of these osteoblasts
[23]. In addition, on the surface of osteoblasts, there
are specific receptors for each subtype of TGF-β. Bind-
ing of TGF-β to its receptor on the surface of osteo-
blasts can accelerate the generation of osteoblasts
through the Smad protein. The Smad protein has been

shown to be directly involved in TGF-β signalling
pathway-induced osteoblast formation [23, 24]. Wnt10b
is an osteogenic Wnt ligand that can activate Wnt sig-
nalling in osteoblasts. Treg cells are involved in upregu-
lation of Wnt10b by CD8+T cells during intermittent
PTH treatment and supplementation with the probiotic
Lactobacillus rhamnosus GG [14, 25]. Recently, the
CD8 counterpart of Treg cells has been discovered and
is called Foxp3+CD8+Treg cells [3]. These cells do not
affect the survival of osteoclasts, but they can inhibit
the maturation and activity of osteoclasts by suppress-
ing the formation of their actin rings. Simultaneously,
in the bone marrow, the unique property of osteoclasts
to induce Foxp3+CD8+Treg cells and the ability of
Foxp3+CD8+Treg cells to regulate osteoclast function
establishes a bi-directional regulatory loop between
these two types of cells [26]. Interestingly, this regula-
tory loop does not require the presence of various pro-
inflammatory cytokines [26]. Unlike CD4+Treg cells
which are present in large numbers in peripheral blood
and the lymphatic circulation (accounting for approxi-
mately 5–12% of all CD4+T cells), CD8+Treg cells are
present in small numbers in peripheral blood and the
lymphatic circulation, accounting for only 0.2–2% of
total CD8+T cells in various lymphoid organs [27].
Thus, current studies on CD8+Treg cells are not suffi-
cient, and the role of CD8+Treg cells in osteoporosis
has not yet been fully illustrated. Therefore, further
studies in this area are needed [3]. However, it can be
confirmed that a decrease in the number or function of
CD4+Treg cells and CD8+Treg cells in the human body
will cause an increase in bone loss and consequently
lead to osteoporosis.

The relationship between Th17 cells and bone loss
Immature T cells can differentiate into Th17 cells under
stimulation by TGF-β and the inflammatory response. In
addition, IL-6, IL-1β and IL-23 can affect the differentiation
and development of Th17 cells [5]. Retinoic acid-related
orphan receptor-γt (RORγt) is an important transcription
factor of Th17 cells that is responsible for pathological
immune responses. Th17 cells not only can secrete IL-17,
IL-21 and IL-22, but also can produce IFN-γ [28]. Among
these cytokines, IL-17 is the most important pro-
inflammatory factor. The IL-17 family has six members: IL-
17A-IL-17F [29]. Th17 cells control bone mass in two ways.
On the one hand, Th17 cells express high surface levels of
RANKL, which binds to RANK on the surface of osteoclast
precursor cells, promoting the differentiation of osteoclast
precursor cells into osteoclasts to accelerate bone absorp-
tion. On the other hand, Th17 cell-secreted IL-17 directly
enhances the expression of RANKL in osteoclastogenesis-
supporting cells such as osteoblasts and synovial fibroblasts
[30]. RANKL binds to RANK on the surface of osteoclast
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precursor cells and promotes the maturation of osteoclasts,
leading to an increase in bone resorption [7]. Moreover, IL-
17 can also induce macrophages to produce a variety of
inflammatory factors, such as TNF-α, IL-1 and IL-6, to
activate and intensify the local inflammatory response,
which indirectly promotes the expression of RANKL in
osteoclastogenesis-supporting cells, enhances the binding
of RANKL to RANK on the surface of osteoclast precursor
cells, and synergistically accelerates bone absorption by os-
teoclasts [31]. A very important activity of IL-17 is that it
triggers the production of high levels of RANKL by upregu-
lating the production of RANK, which is crucial for the
interaction between T lymphocytes and bone cells (Table 1).
Therefore, in some studies, Th17 cells are called osteoclast
subsets of T lymphocytes [32]. Many clinical analyses have
shown that the number of Th17 cells in the blood and sur-
rounding tissues of osteoporosis patients is several fold
higher than that in the osteoporosis-free population. Thus,
the Th17 cell count can be used as an important marker
for osteoporosis [3]. Studies have demonstrated that after
ovariectomy (OVX), the level of IL-17 is significantly in-
creased in rats. An anti-IL-17 antibody antagonist was
found to effectively prevent bone damage caused by
oestrogen reduction, indicating that IL-17 is involved in
bone resorption [33].

The correlation between Treg cells and Th17 cells
CD4+ T cells are the common precursor cells of Treg
cells and Th17 cells. Differentiation of Treg cells and
Th17 cells requires the involvement of the TGF-β- regu-
lated signalling pathway [34]. However, in different cyto-
kine environments, the differentiation direction of CD4+

T cells can be changed. In the presence of IL-6, IL-23
and TGF-β, IL-6 can inhibit the expression of Foxp3 by

activating signal transducer and activator of transcrip-
tion 3 (STAT3) and can upregulate IL-23 receptor ex-
pression to induce immature T cells to differentiate into
Th17 cells. In contrast, in the absence of IL-6 and other
pro-inflammatory factors, TGF-β drives the differenti-
ation of immature T cells into Treg cells [35]. It has also
been reported that in human T cells cultured in vitro,
the absence of IL-6, IL-21 and TGF-β can induce RORγt
production, upregulate IL-23 receptor expression, inhibit
Foxp3 expression, and promote the differentiation of
Th17 cells. In addition, Th17 cells can secrete IL-21 to
further promote the generation of Th17 cells [36].. Ret-
inoic acid is a key regulator of the TGF-β-dependent im-
mune response. It can inhibit RORγt and promote Treg
cell differentiation under the inductive effects of Th17
cells [37]. Recent studies have identified a new subset of
Treg cells called CD39+Foxp3+Treg cells. These cells
can inhibit the secretion of IL-17 by Th17 cells, thereby
inhibiting autoimmune inflammation induced by IL-17
[38]. Interestingly, Th17 cells and Treg cells can also
interconvert. For example, when the concentration of cy-
tokines produced by exogenous Th17 cells increases,
Treg cells are transformed into IL-17- secreting cells
[39]. Yang et al. found that in the presence of IL-6 and
TGF-β or IL-1 and IL-23, both nTregs and iTregs can
be transformed into Th17 cells [40]. Foxp3/ IL-17
double-positive T cells act as intermediate cells in the
transformation of Th17 cells into Treg cells [41]. Be-
cause Th17 cells and Treg cells are associated with each
other, there is a balance between Th17 cells and Treg
cells when they function in the human body [42]. Con-
sidering the effects of Treg cells and Th17 cells on bone
loss, we may conclude that Th17 cells can promote bone
resorption while Treg cells can inhibit bone resorption

Table 1 Role of Treg cells and Th17 cells cytokines in osteoimmune system

Cytokine Source Effect on bone mass Function in bone homeostasis References

IL-1 Macrophages ↓ Enhances the expression of RANKL to promote osteoclastogenesis [31]

IL-5 Th2 ↑ Inhibits osteoclastogenesis [21]

IL-6 Macrophages ↓ Activates osteoclastogenesis [31]

IL-10 Treg ↑ Inhibits bone resorption [5, 19]

IL-17 CD4+ T cells ↓ Enhances the expression of RANKL and induces macrophages to
produce a variety of inflammatory factors

[28, 30, 31]

IL-35 Treg ↑ Reduces the expression of IL-17
Inhibits osteoclastogenesis

[20]

RANK Osteoclasts ↓ Osteoclast differentiation and activation [9]

RANKL Th17 ↓ Osteoclast activation through RANK [7]

GM-CSF Th1 ↑ Inhibits osteoclastogenesis [17]

IFN-γ Activated Th cells, NK cells ↑ Inhibits osteoclastogenesis [17]

TGF-β Multiple cells lines uncertain Activates osteoclast
Induces osteoblast formation

[5, 23, 24]

TNF-α Th17, macrophages ↓ Activates osteoclastogenesis through RANKL [31]
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[43]. Therefore, by regulating the cross-talk between the
Th17/Treg cell balance and bone cells, we may find new
approaches for the treatment of osteoporosis.

Factors affecting the balance between Th17 cells and
Treg cells
Signalling pathways
The signalling pathways involved in the Th17/Treg cell
balance include the Notch signalling pathway, T cell re-
ceptor (TCR) signalling pathway and costimulatory mol-
ecule signalling pathway.
The Notch signalling pathway is a highly conserved

intercellular communication cascade in multicellular or-
ganisms that can regulate the fate of various cells and
differentiation processes in the human immune system.
The Notch pathway includes four Notch receptors
(Notch1, Notch2, Notch3 and Notch4) and five ligands
(Jagged1, Jagged2, Delta-like1, Delta-like3 and Delta-
like4) [44]. Li et al. showed that Notch1 mRNA expres-
sion was positively correlated with the Th17/Treg ratio.
In the inflammatory response, when Notch1 signalling
was enhanced, the expression of RORγt was significantly
increased but the expression of Foxp3 was significantly
decreased, thereby regulating the differentiation of Th17
cells and Treg cells [45]. Yin et al. found that blocking
Notch signalling with DAPT (a γ-secretase inhibitor) sig-
nificantly inhibited the differentiation of Th17 cells and
reduced the number of Th17 lineage cells, leading to a
reduction in IL-17 secretion, which suggests that inacti-
vation of Notch signalling may reduce the production of
IL-17 [46]. Notch signalling molecules can regulate the
Th17/Treg cell balance by inducing the transformation
of immature CD4+ T cells into Th17 cells and Treg cells:
Jagged1 reduces the expression of IL-6 and TGF-β-
induced RORγt in CD4+ T cells, inhibiting the conver-
sion of CD4+ T cells into Th17 cells. In addition,
Jagged1 and 2, together with Delta-like1 and 4, can en-
hance the conversion of CD4+ T cells into Treg cells by
regulating the TGF-β signalling pathway and Foxp3 [47].
Although the mechanism of the Notch signalling path-
way in osteoporosis is not yet completely understood,
we can still see that regulating the Th17/Treg cell bal-
ance by reducing the differentiation and function of
Th17 cells by inhibiting the activity of the Notch signal-
ling pathway might be a potential therapeutic approach
for the treatment of osteoporosis [48].
The TCR signalling pathway also has some influence

on the growth and development of Treg cells [49]. When
the key enzymes in TCR stimulation-induced signal
cascade reactions, such as lymphocyte protein tyrosine
kinase (LCK), ζ chain related protein kinase (Zap70) and
the adaptor used to activate T cells (LAT) contain muta-
tions or deletions, the TCR signal is weakened, which
leads to the development of defects and reductions in

the activity of Treg cells, and simultaneously stimulates
the production of IL-6 to drive the differentiation of
CD4+ T cells into Th17 cells. However, when all compo-
nents of the TCR signalling pathway are normal, inhib-
ition of TCR signalling promotes the generation of Treg
cells [50–52]. For example, a CD3ζ mutant with a phos-
phorylation defect can weaken TCR signalling but pro-
mote Treg cell generation [53]. Interestingly, TCR
signalling mainly affects nTregs. Whether it has any ef-
fect on the differentiation of iTregs remains to be stud-
ied [49]. Some scholars claim that the levels of IL-17
and Foxp3 do not increase when the Src family kinase
LCK is mutated, indicating that the numbers of Th17
cells and Treg cells do not change, a possibility that is
worthy of further study [54]. Treg cells can further dif-
ferentiate into effector Treg cells after activation of the
TCR signalling pathway and exhibit an activated pheno-
type and full suppressor function. Interferon regulatory
factor 4 (IRF4) plays a synergistic role in this process by
driving the expression of the immunosuppressive cyto-
kine IL-10 [55]. Bach2 is an important regulator of the
maintenance of the stable state of downstream TCR sig-
nalling and the differentiation of Treg cells. It can limit
the production of IL-10 and prevent the premature dif-
ferentiation of Treg cells. Bach2 can inhibit the
genomic-binding of IRF4, thus limiting the effector dif-
ferentiation of Treg cells driven by TCR. Bach2 balances
the transcriptional activity of IRF4 induced by TCR sig-
nalling to maintain homeostasis of nTregs and iTregs
[56]. In addition, casein kinase 2 (CK2), as an enzyme
modifying the TCR signalling pathway, plays an import-
ant role in the regulation of the Th17/Treg cell balance.
Recently, a study reported that CK2 can promote Th17
cell differentiation and inhibit Treg cell generation by
inhibiting FoxO1. If FoxO1 is knocked out or chemically
inhibited, the number of Th17 cells is significantly de-
creased while the number of Treg cells is increased [57].
Activation of T cells requires the participation of a dual

signal system. In addition to the first signal provided by
TCR recognition of MHC-restricted antigenic peptide epi-
topes, the second signal provided by costimulatory mole-
cules on antigen- presenting cells (APCs) is also needed to
activate T cells [58]. The costimulatory molecules CD80
and CD86 on the surface of APCs bind to CD28 on the
surface of T cells. The cytoplasmic tail of CD28 has dock-
ing sites for signalling molecules, among which the
YMNM motif at the membrane-proximal end binds to
PI3K, and the PYAP motif at the distal end binds to
growth factor receptor binding protein 2 (Grb2) and Lck
[59]. CD28 signal transduction is important to maintain
the stability and function of Treg cells. Costimulatory sig-
nals are transmitted to developing thymocytes through
the Lck binding motif in the cytoplasmic tail of CD28,
thus inducing Foxp3 expression and upregulating the
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expression of glucocorticoid-induced tumour necrosis fac-
tor receptor (GITR) and CTLA-4 to initiate the differenti-
ation of Treg cells [60]. In CD28-deficient mice, the
number of nTregs and iTregs is decreased [61]. In
addition, the CD28 costimulatory signal can also enhance
the secretion of IFN-γ and IL-2 from activated CD4+ T
cells. IL-2 can inhibit the expression of the α-chain of the
IL-6 receptor, and IFN-γ inhibits STAT3 and further
blocks the activation of Th17 cells by IL-6. These events
form a negative regulatory loop modulating the differenti-
ation of Th17 cells [62, 63].

Metabolism
Nutrient metabolism in the human body is also import-
ant for maintenance of the Th17/Treg cell balance [64].
The energy demand of immature T cells is low. The
ATP required for T cell activity is mainly produced by
aerobic oxidation of glucose or by fatty acid oxidation.
When T cells are activated, the glycolysis pathway
becomes the main energy source due to active cell pro-
liferation and growth [37]. The mammalian target of
rapamycin (mTOR) protein regulates the key factor in T
cell differentiation and function. Under steady-state con-
ditions, mTOR is inhibited. When immature T cells
recognize antigens, mTOR is activated and promotes the
differentiation of T cells into different cell subtypes [37,
65]. Cluxton et al. demonstrated that the differentiation
of Th17 cells mainly depends on glycolysis and hypoxia
inducible factor-1 α (HIF-1α) because when the glucose
level in mice was reduced or the mTOR inhibitor rapa-
mycin was used, the number of Th17 cells decreased but
the number of Treg cells increased in these mice. Treg
cells also depend on glycolysis to some extent, but they
are less dependent on glycolysis than Th17 cells. The
differentiation of Treg cells requires oxidative phosphor-
ylation and can be inhibited by HIF-1α [66]. Cluxton
also pointed out that Treg cells can exhibit enhanced
glycolysis, mitochondrial respiration and fatty acid oxi-
dation, but Th17 cells appear dependent on fatty acid
synthesis [66].

Diet
Diet is closely correlated with human health. Excessive
salt intake is not conducive to human health because a
high-salt diet can cause a series of diseases, such as
hypertension and diabetes [67]. Hamid Y. Dar et al.
pointed out that excessive salt intake can lead to in-
creased bone loss because a high-salt diet increases the
expression of pro-inflammatory factors such as IL-6, IL-
17, RANKL and TNF-α and decreases the expression of
anti-inflammatory factors such as IL-10 and IFN-γ,
which subsequently enhances the induction of Th17
cells and simultaneously decreases the number of Treg
cells [68]. Yang et al. showed that high-salt diet can drive

thymic Treg cells to adopt a Th17-like phenotype and
promote the production of induced Treg cells with a
Th17-like phenotype in a serum/glucocorticoid-regu-
lated kinase 1 (SGK1) dependent manner, while main-
taining their inhibitory function. SGK1 is a salt receptor
in T cells and is preferentially translated in activated
Treg cells. High- salt-induced activation of SGK1 signal-
ling can directly promote the expression of RORγt in
Foxp3+Treg cells, thereby playing an upstream role in
Th17 polarization [69]. L. Wu et al. concluded that in-
creased bone resorption after high-sodium diet intake
not only may be a secondary cause of urinary calcium
loss, but also may be due to a direct cell-mediated effect
on osteoclasts. In their experiment, they found that
higher concentrations of Na+ can significantly increase
the expression of some transcription factors for osteo-
clastogenesis, such as nuclear factor-activated T cells c1
(NFATc1) and spleen proviral integration oncogene
(SPI1). Importantly, NFATc1 is considered to be the
most potent transcription factor induced by RANKL
[70]. Interestingly, Agnes Schroder and colleagues found
that a low-salt diet (LSD) increased bone density, re-
duced the number of osteoclasts, and increased the Na+

content and nuclear factor of activated T cell 5 (NFAT5)
levels in bone marrow compared with those in mice on
a high-salt diet. Mechanistically, local Na+ accumulation
in the bone marrow of LSD-treated mice increased the
expression of OPG and prevented RANKL-induced
osteoclast formation in an NFAT5-dependent manner
[71]. In addition, MacGregor and Lin et al. demonstrated
that a reduction in salt intake may have an important
beneficial effect on bone density, thus preventing and
treating osteoporosis [72, 73]. En-De Hu et al. showed
that the Treg/Th17 cell ratio in mice fed a high-fibre
diet and sodium butyrate was significantly higher than
that in mice in the model control group. A high-fibre
diet and sodium butyrate can reduce the mRNA expres-
sion of IL-17 and IL-6, and increase the expression of
IL-10 and TGF-β [74]. A high-fibre diet can induce the
production of short-chain fatty acids (SCFAs) such as
butyrate and propionate. In a mouse model of inflamma-
tory bowel disease, administration of SCFAs was found
to increase the level of Treg cells in the intestine, espe-
cially in the colon, via certain G-protein-coupled recep-
tors or via inhibition of histone deacetylases [75]. Some
scholars believe that SCFAs can act on the free fatty acid
receptors GPR43, GPR41 and GPR109A to exert their
effects on host immunity [76]. GPR43 expression is es-
sential for the expansion and inhibition of Treg cells in
colitis induced by SCFAs [77]. GPR109A is a receptor
that responds to both niacin and butyrate [76]. Activa-
tion of GPR109A by SCFAs can upregulate the expres-
sion of anti-inflammatory molecules in monocytes,
increase the differentiation of Treg cells and enhance
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the production of IL-10 [78]. Vitamin A is a fat-soluble
vitamin and retinoic acid is its biologically active form.
Vitamin A is highly concentrated in the intestine and is
the core mediator of Treg cell homeostasis in the in-
testine. In the presence of TGF-β1, retinoic acid can
induce the differentiation of Treg cells. Retinoic acid
can not only enhance Treg cell differentiation but
also prevent Th17 cell differentiation [79, 80]. Inter-
estingly, SCFAs may also stimulate the production of
retinoic acid by epithelial cells [81]. Mice fed a diet
lacking vitamin A or treated with retinoic acid recep-
tor inhibitors show a reduction in the population of
Treg cells [82, 83]. In addition, dietary amaranth can
reduce the internal level of IL-17 while increasing the
level of IL-10 and can reduce the Th17/Treg cell ra-
tio to provide immunomodulatory effects through its
abundant beneficial compounds [84].

The intestinal microflora
The intestinal microflora is not only involved in the
regulation of various physiological functions in the
human body but also related to many human diseases.
Importantly, the intestinal microflora may be a key regu-
latory factor of bone metabolic homeostasis [85]. The in-
testinal microflora mainly consists of five different phyla
and several genera of the Eubacteria domain, including
Actinobacteria (Bifidobacterium), Bacteroidetes (Bac-
teroides), Firmicutes (Lactobacillus), Proteobacteria
(Escherichia), and Verrucomicrobia (Akkermansia) [86].
Bifidobacteria can promote monocytes to secrete large
amounts of TGF-β to induce Treg cell differentiation [87].
Interestingly, the human symbiotic species Bifidobacter-
ium adolescentis, can independently induce the produc-
tion of Th17 cells in the intestines of mice [88]. Sarah
Onuora et al. found that Bifidobacterium adolescentis
worsened autoimmune arthritis in a mouse model [89].
The role of Bacteroides fragilis is largely dependent on
polysaccharide A (PSA), an immunomodulator that main-
tains host immune homeostasis. PSA can promote the dif-
ferentiation of CD4+T cells into Treg cells. In addition, it
can inhibit the differentiation of Th17 cells through Toll-
like receptor signalling inherent in CD4+T cells [90].
Hamid Y. Dar et al. found that oral administration of Ba-
cillus clausii in mice with postmenopausal osteoporosis
reduced the levels of pro-inflammatory cytokines (IL-6,
IL-17 and TNF-α) and increased the levels of anti-
inflammatory cytokines (IL-10 and IFN-γ), thereby enhan-
cing bone health [91]. You Jin Jang and colleagues isolated
novel strains of Lactobacillus fermentum (KBL374 and
KBL375) from faeces. When they used these two strains
to treat human peripheral blood mononuclear cells, they
found that the levels of inflammatory cytokines such as
IL-17A were decreased but those of anti-inflammatory
cytokines such as IL-10 were increased. Administration of

Lactobacillus fermentum KBL374 or KBL375 to mice
increased the population of CD4 + CD25 + Foxp3 +

Treg cells in mesenteric lymph nodes [92]. Abdul
Malik Tyagi and his team treated neonatal mice with
Lactobacillus rhamnosus GG (LGG) and found that
the trabecular bone volume in treated mice was in-
creased. Mechanistically, butyrate produced by LGG
in the intestine may induce the expansion of Treg
cells. Treg cells promote the assembly of the NFAT1-
SMAD3 transcription complex in CD8+ cells. NFAT1-
SMAD3 drives the expression of Wnt10b, which con-
sequently regulates bone anabolism [25]. In addition
to producing SCFAs and PSA, the intestinal micro-
flora may also produce the aryl hydrocarbon receptor
(AHR), polyamines (PAs) and poly-gamma-glutamic
acid (γ-PGA) [78]. AHR regulates the differentiation
of Treg cells and Th17 cells in a ligand-specific man-
ner. For example, when activated by TCDD (2,3,7, 8-
tetrachlorodibenzo-p-dioxin), AHR can induce the
generation of Treg cells and suppress experimental
autoimmune encephalomyelitis (EAE) through a TGF-
β1-dependent mechanism. In contrast, after FICA (6-
formylindolo [3,2-b] carbazole) treatment, AHR can
promote Th17 cell differentiation and exacerbate EAE
[93]. Recently, a team proposed that AHR binds directly
to the open chromatin regions in the locus of the orphan
chemoattractant receptor GPR15 to enhance its expres-
sion and thus regulates intestinal homing of Treg cells
[94]. PAs are small polycationic molecules produced dur-
ing arginine metabolism. Spermidine is the best character-
ized PA to date. Carriche and his colleagues found that
spermidine enhanced Treg cell differentiation in vitro in
an autophagy-related manner [95]. γ-PGA can induce the
expression of Foxp3 through the Toll-like receptor 4 path-
way, thus promoting Treg cell differentiation. γ-PGA can
also inhibit the differentiation of Th17 cells by suppressing
the expression of IL-6 [96]. In summary, the microflora
plays an important role in regulating the maintenance and
function of intestinal Treg cells and Th17 cells, although
the mechanisms through which the microflora regulates
the balance between Th17 cells and Treg cells are not yet
fully understood (Fig. 2) [97].

Conclusion
In conclusion, the impact of the balance between Th17
cells and Treg cells on bone mass is obvious. If the
Th17/Treg cell balance shifts towards Th17 cells, bone
resorption is enhanced, and the risk of osteoporosis is
greatly increased. Currently, the treatment of osteopor-
osis mainly includes oestrogen replacement, phosphate
treatment, calcium and vitamin D treatment, and appro-
priate physical activities. Considering the close correl-
ation between Th17 cells and Treg cells and their
plasticity, we believe that there are other influencing
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factors in addition to signalling pathways, metabolism,
diet and the intestinal microflora. In-depth study of the
factors that affect Th17/Treg cell balance in osteoporosis
will help to further identify targets for new osteoporosis
drugs, which are also crucial for the maintenance of
human health. The Th17/Treg cell balance also has a
profound impact on the treatment of cancer and auto-
immune diseases. However, most of the current studies
are carried out in animal models. In the future, more
high-quality clinical studies are needed to further ex-
plore the effectiveness and safety of regulating the Th17/
Treg cell balance in the treatment of osteoporosis.
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