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Abstract

Background: The immune system undergoes a myriad of changes with age. While it is known that antibody-
secreting plasma and long-lived memory B cells change with age, it remains unclear how the binding profile of the
circulating antibody repertoire is impacted.

Results: To understand humoral immunity changes with respect to age, we characterized serum antibody
binding to high density peptide microarrays in a diverse cohort of 1675 donors. We discovered thousands of
peptides that bind antibodies in age-dependent fashion, many of which contain di-serine motifs. Peptide
binding profiles were aggregated into an “immune age” by a machine learning regression model that was
highly correlated with chronological age. Applying this regression model to previously-unobserved donors, we
found that a donor’s predicted immune age is longitudinally consistent over years, suggesting it could be a
robust long-term biomarker of humoral immune ageing. Finally, we assayed serum from donors with
autoimmune disease and found a significant association between “accelerated immune ageing” and
autoimmune disease activity.

Conclusions: The circulating antibody repertoire has increased binding to thousands of di-serine peptide
containing peptides in older donors, which can be represented as an immune age. Increased immune age is
associated with autoimmune disease, acute inflammatory disease severity, and may be a broadly relevant
biomarker of immune function in health, disease, and therapeutic intervention.
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Background
Ageing is associated with broad decline in organ func-
tion and increased risk for chronic disease. The immune
system undergoes dramatic changes associated with age,
including decreased immune response, loss of immune
memory, and increased chronic inflammation. These

immune dysfunctions manifest as re-activation of latent
infection, decreased tumor immunosurveillance, and
age-associated chronic immunopathologies [1–4]. Both
adaptive and innate immune mechanisms are impaired,
as evidenced by antigen-independent decreases in cellu-
lar proliferation and function [5, 6], migration [7], T-cell
receptor diversity [8], antibody secretion [9], phagocytic
abilities [10], cytotoxicity [11], and broad dysregulation
of cytokines and chemokines [6, 12].
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Ageing broadly impacts humoral immunity, as anti-
body affinity and the adaptive immune processes that
lead to their production suffer with age [5, 13, 14]. For
instance, plasma cells produce less antibody [15], germi-
nal center B cell selection results in lower affinity anti-
bodies in mouse [16], and the CD4+ T cell receptor
diversity decreases [17]. Additionally, hematopoiesis
broadly declines [4, 18–21], professional antigen pre-
senting cells reduce expression of peptide-MHC-II com-
plex [22, 23], and antibody effector cells show decreased
functional clearance of IgG-bound pathogens [12, 24].
These age-dependent declines in humoral immunity can
be manifested in less effective antibody binding [25, 26],
which can result in differential infection protection as
demonstrated by serum transfer experiments of hetero-
chronic mice [27]. Mouse studies have further demon-
strated that while antibody quality and quantity suffer
with age, there is also a concomitant decreased specifi-
city to foreign antigen and increased production of auto-
antibodies [28]. IgM autoantibody secretion is selectively
induced in older mice in response to vaccination,
whereas unvaccinated aged mice in semi-sterile lab en-
vironment presented with fewer self-reactive secreting
splenic B cells [29].
While it has long been known that human antibody

production is altered with age [30], which can lead to in-
creased self-reactivity [31], more recent data suggests
deeper links to autoimmune disease etiology and impact
on broader metrics of quality of life. B-cell diversity from
donors > 86 years old vs those < 54 years can be drama-
tically reduced, which is then subsequently correlated
with measurements of frailty, survival, and vitamin
deficiency [13].
To better understand and quantify the impact of

ageing on the immune response, we identified age-
associated patterns in serum antibody binding profiles.
We profiled IgG antibody binding using peptide mi-
croarrays in a cohort of 1675 donors. We created a
machine learning model that estimates an “immune
age” from a donor’s antibody binding profile that is
highly correlated with chronological age. The immune
age is highly robust with respect to technical parame-
ters, such as reagents, peptide microarray design, and
serum handling. The machine learning regression
model was validated on an independent donor cohort
and longitudinal profiling revealed that a donor’s im-
mune age is typically consistent over multiple years
suggesting that this could be a robust long-term bio-
marker of age-associated humoral immune decline.
We show that accelerated immune ageing, when a
donor has an older immune age than chronological
age, is associated with autoimmunity, autoinflamma-
tory disease, and acute disease flares. These results
suggest that the immune age may be a broadly

relevant biomarker of immune function in health and
disease.

Results
Profiling the circulating antibody repertoire in a
demographically-diverse cohort
To understand antibody binding distributions in healthy
donors, we quantified antibody binding in a large demo-
graphically diverse cohort (Fig. 1a, Figure S1A).
Antibody-peptide binding was measured by diluting
serum samples, incubating on peptide arrays, labeling
bound antibodies using fluorophore-conjugated second-
ary anti-IgG antibody, and imaging the arrays to quantify
fluorescent intensities (Fig. 1a, Methods). High-density
peptide microarrays were synthesized with ~ 125,000
distinct, untargeted peptide sequences as previously de-
scribed (Methods). Previous studies using the same array
design were able to predict chronic infections [32]. This
approach enabled us to profile a broad sample of anti-
bodies present in each serum sample.
Our demographically diverse cohort was enrolled pro-

spectively at multiple collection sites that obtained
venipuncture donor samples and collected self-reported
age, weight, height, and sex (Methods). To minimize bias
associated with self-selecting blood donors, we pre-
specified a balanced donor enrollment by age, sex, and
geography (Fig. 1b). In total, 1675 samples were obtained
for training and verifying conclusions. A “discovery” co-
hort was recruited July-Sept 2017, resulting in 601 donor
serum samples. A “verification” cohort was then re-
cruited from a distinct set of donors Sept-November
2017, obtaining samples from 1074 donors. All studies
were performed with Institutional Review Board ap-
proval (Methods).

Chronological age is highly correlated with serum
antibody binding profiles
We assayed 601 donor samples to measure antibody
binding profiles in a healthy donor population (discovery
cohort). Pearson’s correlation analysis of chronological
age revealed thousands of peptides with statistically sig-
nificant correlation (Fig. 1c-d, Figure S1B-D). Effect size
for age was estimated using the age coefficient of linear
regression and log-ratio of average peptide fluorescence
of older (> 60 years) compared to younger (< 40 years)
donors (Figure S1D). The thresholds of 40 and 60 years
were selected to balance sample size, donor demography
diversity, and diverse probe effect size. When we se-
lected the highest effect size probes (each having log10
ratio > 0.15 and Bonferroni-corrected statistical signifi-
cance PFWER < 0.01), we found that if older donor serum
differentially bound any of these peptides (with log10
ratio > 0.15) that it was likely to bind many other age-
associated peptides (Fig. 1e). This intra-donor
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correlation of the most age-associated probes suggested
that a common peptide sequence motif may be driving
antibody-peptide binding.
The age-associated probes were highly reproducible

in technical replication experiments that used array
manufacturing reagent lots independent from the ini-
tial assay. We confirmed results by taking a subset of
66 samples and re-assaying them to confirm similar
values. For this technical replicate cohort, we selected

donors that did and did not bind highly to age-
associated probes and were young and old. This 2 × 2
selection criteria enabled us to determine if the age-
associated probes were stochastically bound tending
towards age-specific binding or if they were consistent
for a given sample, irrespective of age. The technical
replication cohort confirmed that the same probes
were bound (Figure S2A-C). Importantly this analysis
also confirmed that irrespective of age, the binding

Fig. 1 Antibodies isolated from human sera show different binding profiles in older compared to younger donors. a Peptide arrays were
manufactured with over 131 k diverse probes to assess IgG antibody binding. The assay workflow includes incubating donor serum sample on
the peptide microarray, detecting bound IgG with a fluorophore-conjugated secondary antibody, and quantifying the fluorescent signal at each
feature. A subset of four peptide features are shown along with cognate binding antibody molecules (as indicated by color). b The donor cohorts
were designed to obtain diverse sampling of donor demographics, including age, BMI, sex, and geography from multisite recruitment.
Combinations of age and BMI were explicitly balanced, as were other combinations of demographics. c Age (x-axis) is highly correlated with
many probes’ fluorescent intensities; for example, probe XY064981 with peptide sequence SSVYDG (y-axis) fluorescent intensity and age across
N = 601 donors (each datapoint) has Pearson’s correlation coefficient of r = 0.50 (p < 10− 38). d There are 100 s of peptide features that are
significantly associated with older vs. younger serum donors (red points). The average peptide intensity of younger donors (x-axis) versus older
donors (y-axis) shows the differential expression of all peptides. Every data point is a single peptide probe on the array. Alternative estimates of
effect size and significance yield similar results (Figure S1). e Probes associated with age are highly correlated: if one age-associated peptide
probe has elevated fluorescent intensity in a given donor, it is likely that fluorescence of many age-associated peptides are increased. Age-
associated probes (y-axis, selected red points in Fig. 1d) are shown across all 601 donors in the cohort (x-axis). Donors are labeled by age (gray-
scale legend) and probe intensities values are shown as Log10 ratio of probe in specific donor versus mean probe intensity across all donors.
Hierarchical clustering was performed on donors and probes independently
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patterns of a given donor to age-associated probes
was technically reproducible (Figure S2D).

Antibodies from older donors bind peptides with an
N-terminus di-serine motif
The peptide sequence of probes associated with age con-
tained a common pattern of serine residues at the array
surface-distal N-terminus (Fig. 2a and Figure S3A). Of
the largest effect size probes, > 90% had two consecutive

serine residues at the N-terminus (N-di-serine motif,
Figure S3D). The remaining < 10% probes started with a
serine residue in one of the two residues at the N-
terminus. The N-di-serine pattern was highly statistically
significant (P < 10− 41; hypergeometric test) compared to
other N-terminal amino acid dimers (Fig. 2b). Correl-
ation to age increases with the number of N-terminal
serines (Fig. 2c) and decreases as the di-serine is located
further from the N-terminus (Fig. 2d). Due to

Fig. 2 Peptide sequence motifs in probes associated with age. a Sequence motifs in peptide probes associated with age. Peptides associated
with age contain a strong N-terminus di-serine (N-di-serine) motif. Motif information content (bits, y-axis) is shown for each position (x-axis). b
The N-terminus di-serine motif is much more associated with age (y-axis) than any other di-residue motif (x-axis). c The number of serine residues
at the N-terminus (x-axis) is correlated with age-associated antibody binding (y-axis). d Age-associated peptide binding decreases with increased
distance of di-serine from N-terminus. The starting position of di-serine residues (x-axis) relative to the N-terminus. The N-terminus is defined as
N = 1. e To further characterize the peptide motifs, multiple peptide array synthesis modalities were employed (see Methods). Arrays with ~ 131 k,
~ 351 k, and ~ 3366 k probes were synthesized with peptides that had N-terminus acetyl-capping, a free N-terminus amine, or contained probes
with both capped and free N-termini. f Older and younger donor sera were assayed on large microarray format with 3366 k non-control probes,
which contained a broader set of peptide probes and inclusion of amino acids, including threonine and isoleucine, which were excluded in the
131 k probe microarray. The presence of multiple N-terminus serines remains the most highly significant motif, and additional serines in positions
3 and 4 may increase discrimination slightly (N = 142 probes starting with tetra-serine). Motifs including N-terminus threonine, which is
biochemically similar to serine, are the second-most associated motif. Tryptophan, which is typically the ‘stickiest’ amino acid due to the aromatic
indole sidechain, is shown as a negative control that is not associated with age. g Age-associated antibody binding to the di-serine N-terminus
motif requires that the N-terminus be acetylated. On arrays where both acetylated and un-acetylated (uncapped free amine) probes are on
present on each individual microarray, only acetylated “SS” features show age-associated binding. The number of age-associated probes with
> 50% increased binding in donors > 60 yrs. vs < 40 yrs. (y-axis) is shown for uncapped free-amine probes (left) and acetyl-capped probes (right).
The cutoff of 50% is representative and other cutoffs can be found in supplemental material (Figure S3G)
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manufacturing limitations of the standard array format,
we could not expand on the di-serine motif since there
were only 438 peptides on the array with an N-terminus
di-serine.
To refine and better understand the age-associated

binding to serine, we developed a peptide microarray
synthesis that packed peptides more densely on a larger
physical array (Methods). This new large-format array
had 3366 k probes, which contained peptide sequences
that tiled all peptide subsequences of length 5 (5-mers),
many infectious disease proteins and antigens, auto-
immune antigens, and about 4000 extra-cellular or se-
creted human proteins. Notably, the larger format array
contains 16,092 probes that start with a N-di-serine
motif, allowing us to better-characterize the adjacent
residues that may influence antibody-peptide binding.
We selected a subset of samples to assay on the larger

peptide array platform, based on N-terminus serine
motif score and age, using same selection strategy as for
technical replication cohort (N = 32). Again, we observed
that nearly all age-associated probes contain a strong N-
di-serine motif. While not all N-di-serine probes are sta-
tistically significantly age-associated, > 98% of N-di-
serine probes have > 0 Pearson’s correlation with age
suggesting that the vast majority of N-di-serine probes
may be associated with donor age with a properly pow-
ered cohort. Due to the increased number and diversity
of probes, the larger array format enabled the discovery
of several sequences highly enriched in the top age-
associated probes, including N-terminus motifs SS [VF].
However, these expanded motifs were only modestly sta-
tistically significantly more enriched than a
homopolymer-serine motif.
To further expand the N-di-serine motif, we synthe-

sized the larger format peptide array labeling every
probe with N-di-serine, followed by the original peptide
(Fig. 2e). This allowed us to exploit similar manufactur-
ing protocol and synthesis controls while fixing an N-
terminus di-serine and allowing probes to differentiate
exclusively on non-N-di-serine influences on peptide-
antibody binding. We discovered multiple statistically
significant motifs; however, most significant was strik-
ingly N-tetra-serine ”SSSS” (Fig. 2f). We also found that
homo-threonine N-terminus motifs attracted increased
antibody-binding, which was not discovered on smaller
peptide array due to exclusion of threonine residues
(Fig. 2f). More complex motifs, such SS[VF], had far less
statistical significance and effect size.
Interestingly, an N-terminus acetyl-cap was required

for antibodies to bind polyserine motifs (Fig. 2g). We
synthesized both acetyl-capped and uncapped arrays, as
we hypothesized that peptide charge may influence
antibody-peptide binding. The acetyl-cap decreased
overall peptide charge compared to arrays where the N-

terminus was left as a free-amine. We then synthesized a
single 351 k feature array that included two copies of the
original 131 k peptide library, with one copy of the li-
brary being acetyl-capped and the other copy being un-
capped. We found that only the acetyl-capped SS-
peptides were bound preferentially in older donors (Fig.
2g). This 351 k-feature array enabled comparison of pep-
tides that were side-by-side on a single array, which mit-
igated possible batch effects by synthesizing peptides
simultaneously and assaying together on single array.

Creating a N-terminus di-serine age-association score
Since the N-di-serine motif was prominently enriched in
age-associated peptide probes, which had high intra-
donor correlation, we calculated the average normalized
fluorescent intensity of the age-associated N-di-serine
containing probes (Methods). This simple aggregate stat-
istic was remarkably robust across experimental assay
conditions and peptide microarray format (Figure S3F).
While the N-terminus di-serine motif was strongly

enriched and statistically significant, it was only partially
predictive of chronological age. Many older donors had
limited antibody binding for probes with N-terminus di-
serine and a subset of young donors presented with high
binding to these peptides. There was high enrichment of
highly bound N-di-serine probes in donors > 60 years vs
< 40 years (probes that were > 1.8 fold higher than array-
median; odds ratio of 7.3; two-sided Fisher’s exact test).
However, Pearson’s and Spearman’s correlation coeffi-
cients between this score and chronological age was low
(r = 0.36 and ρ = 0.35; p < 10− 20; Fig. 3a). Thus, the N-
terminus di-serine motif suggests potential biological
mechanism underlying age-associated antibody binding
shift, but may not be sufficiently predictive of chrono-
logical age to act as an age-related predictive biomarker.

Machine learning model of serum antibody binding
predicts chronological age
We hypothesized that a predictive immune age could be
developed with antibody binding profiles. This predictive
score could then be compared to chronological age to
estimate “accelerated ageing” of the antibody repertoire,
or immune age. Similar “biological age” metrics based
on cell counts, gene expression, cytokine expression,
blood and leukocyte epigenetics, telomere length, and
genetic predispositions thereof have been found to be
predictive of health, disease, and even all-cause mortality
[33–41], suggesting that molecular correlates of age can
be useful biomarkers.
To develop an antibody repertoire immune age, we

used the antibody binding dataset from the prospectively
collected demographically diverse cohort of 1675 donors.
These donors were acquired in two phases, with the first
601 collected being used as a “discovery” cohort and the
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subsequent 1074 used as verification. To obtain an initial
estimate of antibody profile prediction of age, we per-
formed 10-fold cross validation on the discovery cohort.
While several machine learning methods were character-
ized, the elastic net [42] yielded an interpretable linear
regression model that could be well regularized and eas-
ily applied to new unseen data. The age predictions for
each serum sample were calculated from the cross-
validation fold in which the example was in the test set.
Our machine learning regression model was highly

predictive of chronological age in the hold-out folds
(Pearson’s correlation coefficient r = 0.75, P < 10− 107;
Fig. 3b). This strongly suggested that serum antibody af-
finities change during ageing and that older donor sera
can be identified by peptide microarray fluorescent
intensity.
We confirmed the accuracy of this model on a pro-

spectively collected, independently recruited cohort of
1074 donors. This cohort was enrolled in a non-
overlapping time interval as the 601 member Discovery

Cohort and was sampled from greater geographical di-
versity across many venipuncture-collection sites (across
the USA, whereas Discovery Cohort was sampled from
California sites). The samples were assayed on independ-
ently manufactured peptide arrays, which were synthe-
sized months after the original peptide arrays.
We confirmed that the machine learning regression

model was highly predictive of chronological age in the
Verification Cohort of 1074 donors (Pearson’s correl-
ation coefficient r = 0.73, P < 10− 181; Fig. 3c). We also
assayed independently collected samples from a myriad
of other prospectively collected and banked samples,
where we found similar accuracy in control populations
of autoimmunity, infectious disease, cancer, and im-
munodeficiency case-control studies (data not shown).

Desired characteristics of an immune age metric
In addition to being highly correlated with chronological
age, any biological age should also satisfy additional con-
straints: (1) the biological age representing accelerated

Fig. 3 Antibody-peptide binding profiles are able to predict chronological age with high accuracy. a While the average N-di-serine probe
intensity (y-axis) is highly associated with age (x-axis), the average normalized fluorescent intensity of age-associated N-di-serine probes is only
moderately predictive for chronological age (Pearson’s r = 0.36). b An elastic net regression model of peptide array probe intensity data is able to
predict chronological age with high accuracy on holdout examples during model training. Each data point is a single donor, showing the age of
donor (x-axis) and prediction of age based on regression model of antibody binding profile (y-axis). Pearson’s correlation coefficient of r = 0.75. c
The model learned from the Training Cohort is applied to the Verification Cohort. Pearson’s correlation coefficient is r = 0.74 (p < 10− 181, 95%
confidence interval of [0.71, 0.76]). d The age regression residuals (y-axis) for 24 Donors (x-axis) are highly reproducible. Each donor was assayed
in 16 technical replicates, which were balanced across multiple days, array manufacturing synthesis lots, secondary antibody reagent lots, and
sample dilution aliquots (Methods). Each data point is a single assay for a single donor. e The age regression residual values (y-axis) are consistent
across N = 16 donors that consented to regular blood draws for > 1 yr. Donors with > 5 samples over > 1 yr (N = 13) had consistent age-
regression values over this time period. Data shown for all donors (lines, color indicates donor)
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ageing should be statistically robust across resampled
training sets and machine learning models; (2) biological
age should be consistent across different assay modalities
since the biological age should be specific to a donor,
not due to experimental variation; (3) the biological age
should have less variation within repeated measures of a
donor than the variation between donors; and (4) longi-
tudinal samplings should have relatively low variance
with changes trending at a similar rate as chronological
age.

The immune age is statistically robust
We hypothesized that if a donor’s immune age was
higher than their chronological age, the “accelerated”
ageing of the humoral immune response may be associ-
ated with immunopathology or broader disease physi-
ology (Figure S4). For the immune age to be a relevant
biomarker of disease or risk thereof, it must be highly
reproducible. Furthermore, since we hypothesize that
the differene between immune age and chronological
age is the relevant metric, then this regression residual
must be highly reproducible. Typically, residuals are
modeled as randomly distributed noise, e.g., in the
model y = xβ +N(0, ϵ), which can suggest that residuals
are in fact stochastic or experimental noise; however,
non-stochastic residuals may suggest a true deviation of
antibody profile from the expected given chronological
age (Figure S4). This could be evidenced by reproducible
immune age across a number of permutations of train-
ing set data, machine learning algorithm, repeated assay,
different assay modalities, and similar statistical
considerations.
To increase the likelihood of immune age being statis-

tically robust, we quantified residuals across models on a
shared hold-out set and found that regression residuals
are statistically robust. We selected machine learning pa-
rameters that yielded statistically higher bias and lower
variance (after decomposing the sum of squared resid-
uals into average bias and variance, Figure S6A, see
Methods). Combining the two cohorts together, we opti-
mized the machine learning model by testing sparsity
constraints and regularization parameter impact on the
bias and variance (Figure S6A). From the combined co-
hort of size 1675 donors, we sampled two mutually ex-
clusive training sets and one test set. The models
learned from the two training sets were compared on
the one test set to determine accuracy, bias, and vari-
ance. This process was repeated 100 times and results
suggested a semi-sparse classifier including ~ 5–10% of
features be included in a final model that had lower vari-
ance and higher bias, while achieving near optimal ac-
curacy (Figure S6B). The immune age, as predicted
using the optimized machine learning model on a two
independent training sets, had a high Pearson’s

correlation coefficient on a single shared test set. This
suggests that machine learning model and training set
sampling-induced variance is low (Figure S5A).

Immune age residuals are robust across technical
replicates
We also confirmed that residuals were broadly consist-
ent across diverse training and hold-out datasets. When
we trained on divergent peptide arrays that were synthe-
sized using different strategies (e.g., N-terminus acetyl-
ation), we found the immune age predicted on a held-
out test set were comparable (Figure S5A). Similarly, if
we used a different machine learning model (e.g., sup-
port vector regression in place of the elastic net), we ob-
tained similar residuals. We confirmed that assay
reagent lots and peptide arrays synthesized across a 20
month window (April 2017 – January 2019) yielded
comparable the immune ages, further confirming that
the immune ages are technically reproducible (Figure
S5B). Regression analysis performed on donors binned
by ethnicity and sample collection site yielded predic-
tions with similar correlation to age (Figure S5C) that
were not significantly different in an ANOVA (Figure
S5D). Finally, we used completely different peptide fea-
ture libraries, including arrays with 131 k, 351 k, and
3366 k distinct probes, where we were able to examine
residuals for the same sample when machine learning
models were developed and verified using different pep-
tide sequences on different peptide microarray platforms
(Figure S5B).
This confirmed that immune ages were robust to exact

choice of machine learning model, training dataset, assay
batches, array synthesis procedures, and shared test sets.
The robustness of residuals across these diverse tech-
nical variations (and longitudinal stability, described
below) strongly supports a donor-specific residual that is
non-noise, non-stochastic, and may be biologically
relevant.

Immune age intra-donor variation is less than inter-donor
variation
To further confirm that antibody binding regression
age-residuals were not experimentally stochastic, we se-
lected 24 donors to assay in 16 replicates each. These
donors were selected to ensure reproducibility across a
large dynamic range (Methods). The age residuals were
highly reproducible, presenting with much lower intra-
donor variation than inter-donor (Fig. 3d). Average
standard deviation was +/− 3.7 years, which is < 10% of
the total range of 40 years. Furthermore, donors at the
extreme ends of the dynamic range distribution pre-
sented with homoscedastic variance. This strongly sup-
ports a donor-specific residual that is not driven by
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batch or replication noise. Formal analytic validation of
this assay will be described elsewhere.

Age-associated antibody binding is stable in vivo for > 15
months
We recruited a cohort of healthy donors to have regular
blood draws on an approximately bi-monthly basis and
assayed antibody binding via peptide microarray
(Methods). We found that donors had an average stand-
ard deviation of +/− 5.2 years. Since the age range of the
donors profiled was ~ 40–70 years, the standard devi-
ation is ~ 15% of total range (Fig. 3e). We found similar
stability of the SS-score, which was also < 10% variation
of range (Figure S5E).

Prediction of chronological age is not improved by
cytokine concentrations
We hypothesized that the addition of serum cytokine
concentrations to the antibody binding data would im-
prove prediction of age. A custom panel of cytokines
was measured and a regression model built (Figure S7).
We found that immune age predicted from cytokine and
antibody binding generally agreed, but did not enhance
prediction when combined.

Age-associated antibody-peptide binding is not impacted
by endogenous small molecules, common exogenous
interferents, nor detection reagents
While IgG is a highly abundant serum-protein, there are
many small molecules that are present in much greater
concentration. The binding of IgG molecules to arrayed
peptides could potentially be impacted by interfering
molecules that are also correlated with age. Since our
goal is to discover antibody-mediated mechanisms of the
ageing immune system, we wanted to ensure that the
peptide microarray platform was directly assaying
peptide-antibody interactions based on direct antibody
binding for the peptide sequence.
To determine whether a non-antibody serum factor

may be altering antibody binding, we performed serum
fractionation studies to enrich/deplete specific fractions
for IgG and/or other molecules. The most definitive
fractionation was performed by size column concentra-
tion (Fig. 4a). Columns that used 30 kDa filters were able
to significantly deplete antibody heavy and light chains
in the eluent while concentrating these and other large
protein molecules in the filtrate (Fig. 4b). We confirmed
that the eluent fraction (depleted for IgG) had very lim-
ited peptide-array fluorescent signal, whereas the filtrate
containing IgG was highly concordant with original
serum samples pre-fractionation (Fig. 4c).
The antibody binding regression as performed on the

original sample was re-capitulated on the re-assayed
sample, the recombined fractions, and filtrate, but not

the eluent (Fig. 4d). Similarly, the N-terminus di-serine
intensities were reproduced only with the fractions con-
taining IgG, with no signal found from IgG-depleted
fractions (Fig. 4e).
We also examined probes that typically bind labelled

secondary antibody directly and found that they were
not differentially bound in older vs. younger donor
serum samples (Figure S8B) and that common immuno-
assay interferants do not produce a signal that is similar
to that observed for younger-vs-older serum antibody
binding (Figure S8C,D).

Autoimmune phenotypes are associated with an
accelerated immune age
Since age-related humoral immune decline is associated
with decreased antibody binding for pathogens and in-
creased frequency of autoantibody generation [25–29,
31], we characterized our antibody binding regression
model in a cohort of autoimmune and phenotypically
similar diseases. We enrolled cohorts of non-
autoimmune diseases (fibromyalgia, osteoarthritis, vascu-
lar disease, and similar diseases) and autoimmune dis-
eases, such as Sjogren’s syndrome, rheumatoid arthritis
(RA), and systemic lupus erythematosus (SLE). For most
donors, we had longitudinal acquisition of serum sam-
ples over > 1 yr. We also obtained metadata regarding
disease activity and molecular assays (e.g., anti-dsDNA
autoantibodies). While performing antibody binding pro-
filing by peptide microarray, we balanced diseases and
disease activity (where known) between assay batches.
In general, immune age values calculated in this co-

hort varied little between longitudinal samples from the
same donor, consistent with previous observations.
However, the range of the immune age in a subset of the
autoimmune cohort was much greater. Specifically,
across longitudinally samples from the same donor,
higher SLE disease activity (as measured by SLEDAI
(Systemic Lupus Erythematosus Disease Activity) score)
was associated with accelerated ageing (Fig. 5a). More
broadly, comparing autoimmune cases to healthy con-
trols and non-autoimmune phenotypically similar dis-
eases revealed a striking increase in antibody binding
residuals (Fig. 5b).
These findings were further confirmed by analyzing pa-

tients with SLE that had high vs low disease activity. We
selected a single time point for each donor that was anno-
tated with that individual donor’s maximum SLEDAI
score. We then compared these maximum SLEDAI scores
to find donors that obtained high (> 5) vs. low (< 5) SLED
AI. Healthy donors and those with non-autoimmune dis-
ease had lower antibody-binding age residuals than donors
with low SLEDAI, who in turn had lower age residuals
than donors with high SLEDAI (p < 10− 3; p < 10− 5, re-
spectively; two-sided t-test; Fig. 5c).
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Discussion
We have discovered an relationship between chrono-
logical age and binding of serum antibodies to a specific
set of peptide sequences. We trained a robust machine
learning regression model to estimate immune age that
performed well on an independent prospectively re-
cruited verification cohort. Furthermore, autoimmune

disease and SLE disease activity were both associated
with increases in immune age relative to chronological
age. This constitutes proof-of-concept for using antibody
binding directly as a biomarker in complex autoimmune
diseases.
Antibody binding to short peptide motifs, such as the age-

associated N-di-serine motif, may augment autoantibody

Fig. 4 Serum antibodies are required for predicting chronological age from peptide array binding data. Furthermore, serum small molecules do
not contribute to prediction of chronological age. a Schematic of column size filter. The 30 kDa filter columns can be used to separate serum
molecules into flow-through fraction that contains < 30 kDa molecules and filtered fraction that contains > 30 kDa molecules. b Size filter
columns are effective at depleting IgG using a 30 kDa filter, as quantified by Coomassie Blue staining. Filtrate (> 30 kDa) produces bright bands for
both light and heavy chains. Flow-through (< 30 kDa) is depleted for heavy and light chain; however lower concentrations of > 30 kDa molecules
can still be seen. Ladder standard and heavy/light chain weights are annotated. Image is crop edited and rotated, unedited image can be found
in Figure S8. c-e Antibody purification through column filter shows that IgG is required for prediction of chronological age. Sixteen donor
samples were selected to obtain coverage of chronological age regression dynamic range (Methods). These 16 samples were processed in 4
ways: (1) no processing (sample source), (2) filtered through 30 kDa column and only the filtrate (> ~ 15 kDa molecules retained; filtrate), (3)
filtered through 30 kDa column and only the flow-through retained (<~ 75 kDa molecules retained; flow through), and (4) the filtrate and flow
through were recombined after running through column. c Correlation between log10 peptide intensities show sample source, filtrate + flow-
through, and filtrate all recapitulate original signal. In contrast, the flow-through alone, which is IgG depleted, has no correlation with original
peptide-antibody binding. d In addition to raw signal being recapitulated, the machine learning regression model is recapitulated only when IgG
is present. The 16 samples are plotted as machine learning regression values from the original (x-axis) and filter column-processed (y-axis). e
Same as (d), but axes’ values are the di-serine peptide score rather than chronological age regression model
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formation. For instance, the Fc fraction of IgG, which
rheumatoid factor targets, contains multiple ‘SSV’ motifs,
which we also observed in peptides preferentially bound in
older donors. While rheumatoid factor doesn’t bind these
motifs in co-crystals with IgG Fc (primarily binding to CH2
and CH3 domains) [43, 44], it is intriguing that multiple di-
serine motifs may stabilize interaction to enhance autoanti-
body avidity.
We demonstrated the biological relevance of the im-

mune age in autoimmunity; however, other biological
and immune-related ageing studies have found broader
implications of dysregulated ageing processes. For in-
stance, combinations of inflammatory markers (CRP, IL-
6, IL1β, sTNFAR1) can predict long-term cardiovascular
risk and all-cause mortality in older adults [38, 39].
Other biological age markers, such as telomere length,
the epigenetic clock, and immune gene expression are

associated with disease and all-cause mortality [35–37,
40], but neither provide a clinic-ready marker that speci-
fies which physiological processes are awry. Performing
large scale studies to characterize blood-based bio-
markers of ageing is becoming more tractable with re-
sources such as the UK Biobank enabling a 5-year study
of mortality in 498,103 donors [34].
The peptide microarray technology is well-suited to

use in large clinical studies, as it can be mass produced
and antibodies remain stable in frozen serum for
months. This contrasts with flow cytometry, which is an
effective way to quantify age-associated segregation of
cell subpopulations based on cell surface markers [40],
but challenging to implement outside of the research en-
vironment due to sample instability, cold-chain require-
ments, assay cost, and large batch effects leading to
inconsistent datasets.

Fig. 5 Donors with autoimmune disease have “accelerated immune ageing” as quantified by antibody binding profiles associated with higher
age than subject’s chronological age at blood draw. a Longitudinal profiling of the antibody repertoire is correlated with disease activity index in
donors with systemic lupus erythematosus (SLE-DAI). SLEDAI and Immune Age are shown (y-axis) relative to days since first visit (x-axis) for three
donors (distinct plots). When the maximum disease activity is compared to lowest disease activity for each donor, we find that the Immune Index
is higher when SLEDAI is higher (p < 0.04, paired t-test). b Age regression residuals are higher in serum from donors with autoimmune diseases.
Donors with autoimmune, autoinflammatory, and phenotypically similar diseases were profiled by peptide microarray and antibody-binding
prediction of age was calculated. Donors with autoimmune disease had higher antibody-based prediction of age (after correction for
chronological age) than healthy control donors and donors with phenotypically similar non-autoimmune diseases. Significance was determined
by a two-sided t-test comparing non-autoimmune to SLE (p < 10− 9), RA (p < 10− 5), SS (p < 10− 3). Non-autoimmune diseases included
fibromyalgia (FM), osteoarthritis (OA), vascular disease (VASC), and other diseases (data not shown). Autoimmune disease profiled were Sjogren’s
syndrome (SS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). c Donors with high autoimmune disease activity in systemic
lupus erythematosus (as measured by SLEDAI), have higher age regression residuals, which suggests SLEDAI is associated with accelerated
antibody binding ageing. The SLE cohort was discretized into donors that had high disease activity (> 5 SLEDAI) vs low disease activity (<=5 SLED
AI). When multiple samples were available for a given donor, the sample with highest SLEDAI was used. Donors with non-autoimmune disease
had lower antibody-binding age predictions than low SLEDAI donors (p < 10− 3, two-sided t-test), who in turn had lower age predictions than
high SLEDAI donors (p < 10− 5, two-sided t-test)
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Prophylactic interventions that reduce the immune age
in a healthy population may lead to improved health
outcomes. A recent study suggested that therapeutic in-
terventions could reverse epigenetic proxies for bio-
logical age [45]. Therapeutically targeting reversal of
immunosenescent trends [46, 47], plasma cell antibody
secretion, and chronic inflammation [39] is possible and
may be directly linked to or assayed by antibody binding
profiles. Non-pharmacological interventions may be
promising for reducing the immune age in a healthy
population. For instance, vitamin E supplementation im-
proves CD4+ T cell synapse formation and exercise is
broadly beneficial to both human and mouse immune
responses [48].

Conclusions
The circulating antibody repertoire has increased bind-
ing to thousands of di-serine peptide containing peptides
in older donors, which can be represented as an immune
age. Increased immune age is associated with auto-
immune disease, acute inflammatory disease severity,
and may be a broadly relevant biomarker of immune
function in health, disease, and therapeutic intervention.
The immune age has the potential for wide-spread use
in clinical and consumer settings.

Methods
Serum sample acquisition for population studies
Donor samples were obtained by venipuncture collected
by United Blood Services (http://www.unitedbloodser-
vices.org), and obtained from Creative Testing Solutions
(CTS, Tempe, AZ). Samples tested negative for a panel
of infectious diseases, including Hepatitis B Virus, Hepa-
titis C Virus, West Nile Virus, T. cruzi, and HIV. All
samples were collected in the USA at diverse geography
(Supp Figure S1A).
After receiving shipment of frozen 1–1.5 ml samples

on dry ice, specimens were thawed and a portion of each
was aliquoted into single use volumes and stored at
− 80 °C. The remaining undiluted sample volume was
stored at − 80 °C and re-aliquoted as necessary. Samples
were tracked using 2D barcoded tubes (Micronic,
Lelystad, the Netherlands).

Human subject consent and annotation
All human subjects in this study consented to samples
being used for research purposes. No test results were
returned to donors. IRB oversight of the study was con-
ducted: Western Institutional Review Board (protocol
no. 20152816).
The following annotations were obtained for each

donor: age, BMI, sex, ethnicity, and geographic location
of original venipuncture blood donation. Except for loca-
tion, all other annotations were self-reported. Age at

time of blood donation was calculated by CTS from self-
reported birthdate, which was not provided to protect
donor privacy. BMI was calculated as weight (in kilo-
grams) divided by squared height (in meters) in units of
kg/m2. Sex was self-reported as male or female. Ethnicity
was self-reported and then coarsely grouped into White,
Latino, Asian, and Black. Site of blood donation was re-
corded and reported as San Francisco, Other California,
Arizona, Nevada, California, North Dakota, Washington,
Montana, and South Dakota, and Texas.

Serum sample acquisition for longitudinal studies
A set of donors were longitudinally sampled an average
of 8 times over an average of 385 days. Donor samples
were obtained by venipuncture collected by trained phle-
botomists. Samples were separated into serum, which
was frozen and stored at − 80 °C.

Peptide microarray synthesis (131 k)
Peptide microarrays were synthesized at a private facility
in Chandler, Arizona, as has been previously described
[32]. Briefly, each microarray contained 131,712 peptide
features, each associated with a single peptide sequence
and spatially randomly distributed. These features com-
prise two libraries: (1) a combinatorial library of 125,509
features used to estimate antibody binding and (2) a
control library of 6203 features, which includes varying
numbers of replicates of 542 peptides, including peptides
with known binding to monoclonal antibodies, fiducial
markers to aid grid alignment, analytic control se-
quences and surface-linker-only features. The amino
acids methionine and cysteine amino acids were ex-
cluded due to their potential to oxidize or cyclize. Add-
itionally, isoleucine and threonine were excluded
because of their chemical and structural similarity to val-
ine and serine, respectively. Impact of isoleucine-to-
valine and threonine-to-serine substitutions on age-
associated probes was examined on larger format arrays
and similar age-association was found (3366 k and 351 k,
data not shown here). Peptides had a median length of 9
residues, ranging from 5 to 13 amino acids in length.
The peptide sequences included 99.9% of all possible 4-
mers and 48.3% of all possible 5-mers of the 16 amino
acids.
Peptides were synthesized on 200 mm (mm) silicon

oxide wafers using semiconductor photolithography, as
previously described [32]. Briefly, an aminosilane func-
tionalized wafer was coated with BOC-glycine and a
photoacid generator, which is activated by UV light. A
set of photomasks were used to expose specific features
on the wafer to UV light (365 nm). These masks were
employed iteratively to add activated amino acids, some
with protected side groups, to the N-terminus of pep-
tides. At the end of final cycle, the N-terminus of the
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chain is capped by an acetyl group. Next, each wafer was
diced into 13 slides of dimensions 25mm × 75mm con-
taining 24 microarrays arranged in eight rows by three
columns. Amino acid side chains were deprotected as
previously described and slides stored in a dry nitrogen
environment until assay.
Slides are grouped into gasket-partitioned cassettes,

each of which holds 4 slides. Since each slide includes
24 independent arrays, this permits 96 samples to be
assayed per cassette in a microtiter plate format.

Design and synthesis of larger format peptide
microarrays
351 k: Synthesized as above, except microarrays contain
351,909 total peptide features printed at higher density,
and includes the amino acid threonine in some peptides.
The 3366 k library contains two copies of the 131 k li-
brary, where one has an acetylated N-terminus and the
other a free amine at the N-terminus. The 3366 k library
also contains peptide features that represent known
autoantigens and other hypothesis-driven probes.
3366 k: These arrays combine larger area with higher

printing density to provide 3,366,522 peptide features.
The present study focused on a combinatorial library of
1,889,568 unique octamer peptides that included all pos-
sible pentamers of 18 amino acids (the 131 k set plus
threonine and isoleucine). Greater than 99% of the
unique pentamers occur exactly once within some pep-
tide at each of the four positions from the N-terminus.
The design also includes 1,328,926 peptides tiled to
known epitope or protein sequences from the literature,
and 148,028 control features.
3366 k-SS: Following standard 3366 k array synthesis

as described above two, additional cycles added di-serine
to the N-terminus prior to N-terminal acetylation. A
special mask was used to photo-expose all features on
the array. Following photo-deprotection, serine was
coupled to all features.

Peptide microarray synthesis quality control
Batches of peptide microarrays were assayed by MALDI-
MS to verify that peptide extension cycles incorporated
the proper amino acids. From this, coupling efficiencies
were calculated and found to be typically > 97% (with
typical confidence interval of 95–100%, depending on
cycle and amino acid pair). This suggests that for pep-
tides of length 10, we expect > 70% of peptides to be
correctly synthesized and the remaining 30% to include
some amino acid deletions (usually no more than one).
Wafer manufacturing was tracked from beginning to
end in a relational database. Data typically tracked in-
clude chemicals, recipes, time and technician performing
tasks. After a wafer was produced the data were
reviewed and the records were locked and stored.

Finally, each lot was evaluated in a standard binding
assay and sample set to confirm performance.

Antibody-peptide microarray binding assay
Aliquots of 20 μL serum were thawed on bench for 30
min. Post-thaw, samples were invert mixed and centri-
fuged. Samples were then diluted to 1:625 in 1% manni-
tol in PBST+P (phosphate buffered saline, 0.05% Tween
20, 0.1% Proclin 950) assay buffer (8 μL sample diluted
into 4992 μL buffer). Sample is then vortexed. All ali-
quoting and dilution steps were performed using a
BRAVO robotic pipetting station (Agilent, Santa Clara,
CA). All procedures, which used de-identified, banked
plasma samples, were reviewed by the Western Institu-
tional Review Board (protocol no. 20152816).
Peptide microarray slides are assembled into 4-slide

cassettes and the automated assay is performed by an in-
tegrated robotics system containing all necessary mod-
ules to process slides. Microarrays were rehydrated by
soaking with distilled water for 1 h (h), PBS for 30 min
(min) and primary incubation buffer (1% mannitol,
PBST-P) for 1 h. Microarray slides were rinsed in dis-
tilled water to remove residual salts and centrifuged
briefly to remove excess liquid. Samples were incubated
on arrays for 1 h at 37 °C with mixing. Following incuba-
tion, the cassette was washed three times in PBST-P
using microtiter plate washer (BioTek Instruments, Inc.,
Winooski, VT). Serum antibody binding to peptide fea-
tures was detected using 4.0 nM goat anti-human IgG
(H + L) conjugated to AlexaFluor 555 (Invitrogen-
Thermo Fisher Scientific, Inc., Carlsbad, CA) in second-
ary incubation buffer (0.5% casein in PBST) for 1 h with
mixing on a TeleShake95 platform mixer, at 37 °C. Fol-
lowing incubation with the secondary antibody, the
slides were again washed with PBST-P, followed by dis-
tilled water. After removal from the cassette, the slides
were sprayed with isopropanol and centrifuged dry.
Quantitative signal measurements were obtained by de-
termining a relative fluorescence value for each address-
able peptide feature.

Peptide microarray data acquisition
An ImageXpress imaging system was used to detect sec-
ondary anti-IgG antibody conjugated to AlexaFluor 555
or DyLight 550. The imager used an LED light engine
(SemRock) centered at 532 nm wavelength to excite
fluorophore-conjugated secondary antibody (Thermo-
Fisher Scientific). We initially used the Mapix software
application (version 7.2.1; Innopsys, Carbonne, France)
to grid images into individual peptide intensities and de-
veloped custom image analysis software for the larger
format arrays (3366 k and 3366 k-SS) where optical
warping caused significant distortion of fluorescent sig-
nal (ImageTool software, described elsewhere). Median
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foreground pixel intensities for each peptide-feature
were calculated in an using the central 60% of feature
pixels, which allowed gridding in accuracy without cata-
strophic failure. Array scans were saved as TIFF images.
Gridding output was saved to GenePix Result format
files with peptide features taking values in the range
~ 500 to 65,535 Relative Fluorescence Units.

Regression modeling of ageing impact on antibody
binding
Two studies, labelled experiments 1068 and 1116, were
used as discovery, feasibility, and verification datasets. In
experiments 1068 and 1116, there were a total of 601 and
1074 samples, respectively, that were obtained from Cre-
ative Testing Solutions and assayed by HealthTell’s Immu-
noSignature system. All samples were incubated on 131 k
arrays following the above protocol. From this data, we
were able to derive a regression model that could predict
a donor’s age from peptide array data (Fig. 1).
The regression model was an Elastic Net learned from

experiment 1068 with parameters tuned based on per-
formance (correlation accuracy) and consistency (mean
squared difference of models learned) in experiments
1068 and 1116. Training took as input an example
matrix X = {xab} where rows {xa}a = 1…N are example vec-
tors with b = 125,509 values. The input matrix X is a
transformation of fluorescent intensity matrix X ′ = {x′
ab} where the transformation is

X ¼ log10
x
0
a þ 100

median x0
a þ 100

� �

 !( )

a¼1…N

:

Additional inputs included label column vector y,
which was donor’s chronological age and input parame-
ters λ and α, which act as regularizer and L1-vs-L2 norm
weighting, respectively. We then learn weighting vector
β that minimizes loss function R, defined as

R ¼ 0:5 y −Xβk k22 þ λ α βk k1 þ 0:5 1 − αð Þ βk k2
� �

;

with λ > 0, α ∈ [0, 1], ‖β‖p is p-norm of β. Early cross-
validation studies on training sets found that alpha =
0.05 and λ ∈ [0.001,10] maximized Pearson’s correlation
with chronological age. However, a broad range of pa-
rameters λ, α yielded similar results (Figure S6A). To in-
crease reproducibility, we performed hyperparameter
search on reproducibility metrics, leading to higher
regularization (lambda > 1) and increased weighting to-
wards L2 norm vs. L1 norm. This tilted error toward
models that were “underfit” and “denser”, which resulted
in models with lower variance and increased reproduci-
bility (Figure S6A).

Technical validation and reproducibility of age-associated
antibody binding
The multi-serine binding and machine learning model
for chronological age prediction were both validated
using arrays from independently manufactured wafer
batches and reagents. The peptide microarray assay was
performed by-hand and by the automated integrated sys-
tem. Samples were processed in a variety of manner and
comparable results were found (see column filtering).

Interfering substance spike-in experiments
To determine if common serum components known to
interfere in immunoassays influenced the immune age
measurement, we compared the immune age of samples
with and without the addition of six common interfer-
ants (Sun Diagnostics, New Gloucester, ME). Prior to
the assay, contrived samples for four donors were pre-
pared with the following neat sample concentrations: tri-
glycerides (500.0 mg/dL), rheumatoid factor (RF)
(1000.0 IU/ml), conjugated bilirubin (5.0 mg/dL), human
anti-mouse antibody (1000.0 ng/ml), hemoglobin
(2000.0 mg/dL), and unconjugated bilirubin (15.0 mg/
dL). The contrived sample was diluted to a final sample
concentration of 1:625 and assayed as described above.

Molecular size fractionation by centrifugal column filters
To determine the impact of small molecules on IgG
binding to peptide arrays, we performed size fraction-
ation of serum samples and re-assayed individual serum
fractions. Serum samples were diluted 1:300 in PBST
and spun at 5000G for 1 min on Amicon Ultra-0.5 mL
30 K centrifugal filters (MilliporeSigma). While the 30 K
filters nominally separate molecules < 30 kDa into the
flow-through and retain molecules > 30 kDa in the fil-
trate, actual concentration/depletion was confirmed with
Coomassie Blue staining.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12979-020-00193-x.

Additional file 1: Figure S1. Age and BMI are associated with antibody
binding profiles. (A) Verification Cohort multisite recruitment was
concentrated in a subset of states. (B,C) Examples of the many probes
with fluorescent intensities (y-axes) that are correlated with age (B) or
BMI (C). (D) Volcano plots show that many probes have statistically
significant effect size for age and BMI. P, q (FDR); the Bonferroni estimate
of PFWER cutoffs are shown as dashed lines. FWER is the family-wise error
rate.

Additional file 2: Figure S2. Peptide array fluorescent intensity is
highly reproducible across reagent lots, independent cohorts, and assay
batch. (A) To estimate reagent lot and assay batch impact, 66 donors
from the Discovery Cohort were selected for repeat assay using arrays
from an independent manufacturing synthesis batch. The initial
quantification (x-axis) is shown for each probe (dot) for all donors (single
scatter plot) compared to re-assay on an independent reagent lot (y-axis).
Values shown are normalized intra-array by median and inter-array by
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probe mean. This normalization decreases artifactual correlation as a re-
sult of probe absolute quantification, which tends to be similar in many
conditions. Thus, each scatter plot shows the donor-specific residuals,
which are highly correlated in the initial and repeated quantification.
(B,C) Age (B) and BMI (C) statistics are reproducible across multiple inde-
pendent cohorts. Age is highly reproducible with nearly exact same large
effect size for each probe across cohorts. BMI is reproducible, but with
smaller overall effect size and increased variation in BMI log10 fold
change. Axes show average log10 ratio and each data point is a peptide
probe on the array. (D) Probe correlations and association with age are
reproducible across reagent lot and assay batch. Donors are the 66 se-
lected for technical replication (described in main text), probes are same
as shown in main-text heatmap, axis clustering uses new technical repli-
cate data using independent reagent and array synthesis lots.

Additional file 3: Figure S3. Peptide probe motifs that are associated
with ageing and BMI. (A) Peptide sequences that are associated with age,
scatter plot same as in Fig. 1d. (B) Peptide sequences that are associated
with BMI. (C) Sequence motifs in peptide probes associated with BMI.
Probes associated with BMI typically have N-terminus glutamic acid (N-
glutamic acid). Motif information content (bits, y-axis) is shown for each
position (x-axis). (D) The N-terminus di-serine and glutamic acid motifs
are present in nearly all age- and BMI-associated probes, respectively,
whereas these motifs are much less common across non-age and non-
BMI associated probes. Fraction of probes (y-axis) with specified motifs
(color legend) are shown for age, BMI, and all other probes (x-axis). (E)
The presence of N-terminus glutamic acid (E) residues is associated with
BMI-correlated probes. A single E residue is comparable in significance to
multiple E residues. The presence of glutamic acid at the N-terminus is
significantly associated with BMI, whereas any other position in the pep-
tide probe has limited association with BMI. (F) The di-serine score is simi-
lar across array formats. Donor samples were assayed on standard sized
arrays (131 k probes, x-axis) and large-format arrays (3366 k probes y-axis)
to find that the presence of N-terminus di-serine motif conferred similar
association with age (axis values). Each data point represents a single
donor. (G) On the 3366 k array format with both acetyl capped and un-
capped probes (351 k array format, see Methods), age-associated probes
are N-terminus acetylated capped. Each data point shows probe count
(y-axis) for a single cutoff value to consider a probe to be age associated
(x-axis). (H) Donor samples were assayed on arrays with 100% acetylated
probes (x-axis) and arrays where only a fraction of probes where acety-
lated (y-axis). Probes that are acetylated in the split array (red) had higher
association with age than those probes uncapped on the split array
(black). This intra-array experimental design controls for potential inter-
array confounders. Each data point represents a single probe and axes
are average values across donors of specified age groups.

Additional file 4: Figure S4. Illustration of how age and BMI can be
used as proxies for immunosenescence, where regression residuals are
values of interest. Hypothetical data are shown, emphasizing residuals
with respect to a learned regression line. Dots are hypothetical donors
(this is not real data) that have been labeled with an Immune Wellness
proxy (x-axis, proxies selected are age and BMI) from which an immune
age (y-axis) was learned. Three hypothetical donors are highlighted and
their signed residuals are plotted on the right with interpretations of
good, average, and poor immune wellness.

Additional file 5: Figure S5. The regression model and residuals are
consistent across multiple training and verification cohorts and potential
confounding variables (array synthesis, ethnicity, sample collection site,
and BMI). (A) The age regression residuals are consistent across multiple
sub-training sets. The Training Cohort and Verification Cohorts were
merged into a single large cohort (N = 1675). Two training sets were cre-
ated, each of size 698, which left 279 samples as a holdout set. An elastic
net regression model was trained on each of the training sets and then
residuals were calculated on the holdout set of 279 samples (data points)
using each of the models (axes). High correlation between model resid-
uals suggests a low variance-error term, which is consistent with residuals
potentially being biologically relevant. Result is representative of 100 sim-
ulated training set splits. (B) Age regression residuals (axes) are correlated
when samples are assayed on different array formats, different training
sets, and different algorithm parameters (subplots). Each dot is a single

donor assayed for a single permutation of array type, training set, and al-
gorithm parameters. Not all samples were assayed on all permutations of
array type. Values on x- and y-axes are residuals, which normalize out the
default transitive correlation of all models being correlated to chrono-
logical age. (C) Regression model yields similar results across samples
binned by ethnicity and sample collection site. Each dot is single donor
and each line shows regression predictions on grouped donors. Chrono-
logical age (x-axis) and prediction of age based on peptide array regres-
sion model (y-axis) are shown. Legend shows correlation coefficient,
regression slope and intercept, and number of samples in a given bin.
Data shown is regression model learned on Training Cohort and applied
to the Verification Cohort. (D) The intercept (shift) and slope (interacting)
terms associated with BMI, ethnicity, and collection state are not statisti-
cally significant. One-way ANOVA test statistics are shown in the Table.
(E) Age-associated antibody-peptide binding to di-serine N-terminus pep-
tides is highly consistent in a long-term study. A total of N = 16 donors
consented to regular blood draws for > 1 yr. Donors with > 5 samples
over > 1 yr (N = 13) had consistent age-regression values over this time
period. Data shown for all donors (lines).

Additional file 6: Figure S6. Parameter selection and impact on
accuracy and analytic characteristics of the regression model. (A)
Regression accuracy and stability metrics (rows) are impacted by
parameters alpha (columns) and lambda (x-axis). While accuracy
(quantified by Pearson’s correlation r) is similar across many parameters,
residual correlation and MSE can vary substantially. We select α = 0.01
and λ = 1 based on this analysis. Note that the residual correlation plot is
undefined (currently shown as y = 1) when number of features in model
is zero. Empty plots showing “number of features” on y-axis indicate that
even for high λ = 10, we found > 1500 features included in model. (B) As
training set size increases (x-axis) the learned model has improved accur-
acy as measured by Pearson’s correlation with chronological age (y-axis).
Each training set is simulated 10 times from all 1675 samples using a
holdout set to test for correlation with chronological age.

Additional file 7: Figure S7. Peptide array immune age is distinct from
cytokine derived immune age. (A,B) Correlation between cytokine marker
quantification by Luminex assay (y-axis, log-scale) and age (A) and BMI
(B). (C) Peptide array prediction of age is not improved by cytokine data;
however, prediction of BMI is significantly increased when including cyto-
kine data. Graphs show on the y-axis, the relationship between peptide
array signals (row a), cytokines (row b), and combinations of peptide array
and cytokines (rows c and d) and on the x-axis, a combination function
of chronological age and BMI that roughly approximates health (column
i), chronological age (column ii) and BMI (column iii), as proxies for im-
mune health. Row (c) trained on example matrix where peptide array
and cytokine data were concatenated, whereas row (d) trained on matrix
where only score derived from peptide array data was concatenated to
cytokine data. Cytokine data was transformed by log10(x + 1) to make lin-
ear regression variance more homoscedastic. In this context, “concaten-
ation” refers to combining two matrices (organized as donors as rows
and measurements in columns) by adjoining column-wise after matching
rows by donor. (D) Chronological age prediction by peptide array (y-axis)
and cytokine levels (x-axis) finds that markers of humoral and innate im-
munity have related, but independent prediction of chronological age.

Additional file 8: Figure S8. Additional control experiments suggest
that age-associated antibody-peptide binding is driven by direct IgG
binding. (A) Original image associated with Fig. 4b. In addition to filter
columns, we also demonstrated IgG separation with Melon Gel purifica-
tion; however, the Melon Gel purification assay reagents disrupted IgG-
peptide array binding in the recombined fractions (the positive control)
even though it produced superior IgG purification. It was thus excluded
from downstream analysis. (B) The age-associated probes are not bound
by anti-IgG secondary antibody, which is used for detecting IgG bound
to peptides. Generic stickiness or peptides with similarity to IgG-Fc (which
can partially bind secondary-antibody directly; y-axis) have minimal correl-
ation with on age-association (x-axis). Each data point is a probe. (C-D)
Interfering substances found in varying abundances in serum have lim-
ited impact on age-associated peptide probes. Serum from 4 healthy do-
nors with and without an interfering substance was assayed by peptide
microarray. Triglycerides, rheumatoid factor (RF), conjugated bilirubin,
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human anti-mouse antibody (HAMA), hemoglobin, and unconjugated
bilirubin at a single high concentration (Methods). (C) The log10 ratio of
serum with and without interfering substance (y-axis) is compared to the
log10 ratio of serum from older (> 60 years) and younger (< 40 years) do-
nors (x-axis). The only interfering substance that shows similar impact on
peptides is RF, which is not statistically significant (p < 0.06, enrichment
ratio of 1.9) as calculated by Fisher’s exact test (cutoffs were age log10 ra-
tio > 0.25 and RF log10 ratio > 0.05; other cutoffs provided similar values).
Pearson’s and Spearman correlation were not near significance, r = 0.06,
rho = 0.03 (p < 0.54 and p < 0.69, respectively). (D) Similar to (C), except x-
axis now shows the log10 ratio of serum from higher BMI (> 30) vs lower
BMI (< 25). No interferants achieved statistical significance (using cutoff of
p < 0.05).

Additional file 9: Table S1. The complete dataset for the Training
Cohort (Experiment 1068). Dataset consists of meta data, raw foreground
intensity data, and transformed data on which most analyses were
performed. Meta data (META) uses row name ‘scan id’ as unique
identifier that can be matched with other data files. Meta data columns
include peptide array reagent, batch, assay, infection, and demographic
information for a given sample. The foreground (FG) intensity values are
formatted with rows as peptide probes and columns as donors. Each
value is in range of [0,65,535]. The first column has row names, which is
probe name, underscore, peptide sequence, where probe name is
created based on the “X” and “Y” physical locations of where the probe is
found on the array. The first row has column name ‘scan id’, which can
be matched to the META rownames. The transformed data (LFG) is log-
transformed data with shrinkage: log10(x + 100). This transform helps data
follow a more homoskedastic distribution and decreases the influence of
low intensity probes.

Additional file 10: Table S2. Same as Table S1, but for Technical
Reproducibility Cohort (Experiment 1102).

Additional file 11: Table S3. Same as Table S1, but for Verification
Cohort (Experiment 1116).

Additional file 12: Table S4. Same as Table S1, but for joint cohort
rerun on improved array manufacturing process (Experiment 1375).

Additional file 13: Table S5. Association statistics for age and BMI with
peptide probe intensity for the Training Cohort (Experiment 1068).

Additional file 14: Table S6. Mapping from self-reported ethnicities to
grouped ethnicities.

Additional file 15: Appendix [49–52].
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