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Abstract

Background: Seasonal influenza virus infection is a significant cause of morbimortality in the elderly. However,
there is poor vaccine efficacy in this population due to immunosenescence. We aimed to explore several
homeostatic parameters in the elderly that could impact influenza vaccine responsiveness.

Methods: Subjects (> 60 years old) who were vaccinated against influenza virus were included, and the vaccine
response was measured by a haemagglutination inhibition (HAI) test. At baseline, peripheral CD4 and CD8 T-cells were
phenotypically characterized. Thymic function and the levels of different inflammation-related biomarkers, including
Lipopolysaccharide Binding Protein (LBP) and anti-cytomegalovirus (CMV) IgG antibodies, were also measured.

Results: Influenza vaccine non-responders showed a tendency of higher frequency of regulatory T-cells (Tregs) before
vaccination than responders (1.49 [1.08–1.85] vs. 1.12 [0.94–1.63], respectively, p = 0.061), as well as higher expression of
the proliferation marker Ki67 in Tregs and different CD4 and CD8 T-cell maturational subsets. The levels of
inflammation-related biomarkers correlated with the frequencies of different proliferating T-cell subsets and with
thymic function (e.g., thymic function with D-dimers, r = − 0.442, p = 0.001).

Conclusions: Age-related homeostatic dysregulation involving the proliferation of CD4 and CD8 T-cell subsets,
including Tregs, was related to a limited responsiveness to influenza vaccination and a higher inflammatory status in a
cohort of elderly people.
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Background
The seasonal influenza virus (flu) is a significant cause of
morbidity and mortality in older adults [1]. The World
Health Organization (WHO) estimates that 3–5 million
cases of severe influenza illness and up to 650,000 deaths
related to respiratory diseases are linked to seasonal flu
each year [2], with the highest mortality rates occurring
in the elderly [3]. Despite vaccination remaining the

most effective approach for the prevention of influenza
infection and influenza-related complications, there is
poor vaccine efficacy in the elderly [4], which is due to
the age-associated dysregulation of immune function
known as immunosenescence [5, 6].
Immunosenescence affects both the innate and adap-

tive branches of the immune system. Thus, age-related
alterations, such as those affecting Toll-like receptors
[7], reduced telomerase activity [8] and deficiencies in B
and T-cell functions [9, 10], have been associated with
influenza vaccine responsiveness. Moreover, elderly
people exhibit a chronic inflammatory status, called
inflammaging, with increased levels of circulating
inflammatory mediators such as pro-inflammatory cyto-
kines and acute phase proteins, e.g., interleukin-6 (IL-6)
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and C-reactive protein (CRP), respectively, that disturb
vaccine responses [11], specifically, the influenza vaccine
response [12, 13]. Several factors, mainly persistent
stressors such as translocated microbial products (LPS)
and cytomegalovirus coinfection (CMV) but also the
age-related increasing activation of the coagulation
system (D-dimers), have been proposed to contribute to
this age-related inflammation [14]. Interestingly, regard-
ing the adaptive immune system, naïve T-cells retain
their proliferative capacity in both aged mice and
humans [15] and naïve T-cell proliferation can even be
enhanced in the elderly because of the age-dependent
loss of thymic output [16–18]. This immunosenescence-
related homeostatic dysregulation (mainly the thymic
output – compensatory peripheral T-cell proliferation
axis) could also be related to inflammaging and even
affect immune competence in the elderly. However, the
potential role of this homeostatic dysregulation in
vaccine responsiveness is mostly unexplored.
The proliferation and cytokine secretion of CD4 and

CD8 T-cells is regulated by regulatory T-cells (Tregs),
which are also involved in the suppression of antigen
presenting cells (APC) and B cells [19]. In fact, Tregs
suppress the B cell immunoglobulin class switching
within germinal centres of human lymphoid tissue [20].
Because of that observation, Tregs have been explored in
several immunization models in animals [21, 22] and in
humans [23, 24]. Particularly, in the context of influenza
vaccination, despite Tregs being known to expand after
vaccination, which possibly attenuates the production of
anti-influenza antibodies [25, 26], the role of baseline
Tregs remains mostly unexplored. However, this is an
interesting question since Treg frequency increases with
age [27], probably as another consequence of age-
dependent homeostatic dysregulation [28, 29].
In the present work, we aimed to further explore

the potential association between several immune
homeostatic parameters in the elderly, such as thymic
function, T-cell proliferation, Tregs and several in-
flammation- and coagulation-related markers, and in-
fluenza vaccine responsiveness.

Results
Rates of vaccine response
Sixty subjects were included in this study. The demo-
graphic and clinical characteristics of these subjects are
summarized in Table 1. Briefly, 24/60 (40%) of the sub-
jects were men, and the median age was 79 [70–87]
years. Before vaccination, the subjects showed a median
CD4/CD8 T-cell ratio of 1.8 [1.2–2.3] and a broad range
of thymic function measured as an sj/β-TREC ratio of 32
[0–50]. Seroprotection was present in 48/60 (80%) of the
subjects before vaccination and in 59/60 (98%) of the
subjects after vaccination. A vaccine response was

observed in 27/60 (45%) of the subjects. The baseline
and post-vaccination HAI titres for the whole group, as
well as the titres for the responder and non-responder
groups, are shown in Additional file 6: Figure S1. The
timing of the post-vaccination sampling did not affect the
HAI titres or the seroconversion-fold data (data not shown)
. No differences were observed in the number of comorbid-
ities or the disability degree between the studied groups.

Levels of inflammation-related markers according to
vaccine responsiveness
The non-responders did not differ from the responders in
terms of age, sex, CD4/CD8 ratio, sj/β-TREC ratio or anti-
cytomegalovirus (CMV) titre (Table 1). Interestingly, sev-
eral nonsignificant differences in inflammation-related
markers were observed. Specifically, the non-responders
showed higher levels of D-dimers (875 [445–1425] vs 620
[438–918], respectively; p = 0.082), higher % neutrophils
(62.8 [54.3–66.9] vs 58.0 [52.4–62.5], respectively; p =
0.089) and higher neutrophil to lymphocyte ratio (NLR)
(2.6 [1.7–3.0] vs 1.9 [1.5–2.4], respectively; p = 0.056) than
the responders, though without statistical significance.
The non-responders showed lower % lymphocytes (24.9
[22.4–31.9] vs 29.0 [25.0–34.1], respectively; p = 0.063)
and % eosinophils (3.15 [1.73–4.45] vs 3.70 [3.20–4.20],
respectively; p = 0.094), but also without statistical
significance.

Frequency of Tregs and Tregs expressing Ki67 according
to vaccine responsiveness
We explored the frequencies of total-Tregs and Treg
subsets and the expression of different activation, prolif-
eration and suppression markers in relation to influenza
vaccine responsiveness (Fig. 1 and Additional file 1:
Table S1). We observed a tendency of higher fre-
quency of total-Tregs in the non-responders com-
pared with the responders; however, the difference
was not significant (1.49 [1.08–1.85] vs 1.12 [0.94–
1.63], respectively; p = 0.061). However, when the two
groups were split according to the total-Treg fre-
quency by using the overall median value (1.38) as a
cutoff, 22/33 (67%) of the non-responders but only 8/
27 (30%) of the responders showed a Treg frequency
above the median (p = 0.004). No differences were
observed regarding the frequencies of Treg subsets.
Nevertheless, the non-responders presented higher
frequencies of both naïve-Tregs (nTregs) (38.9 [19.2–
42.8] vs 19.5 [16.1–35.6], respectively; p = 0.025) and
non-Tregs (38.5 [24.9–44.1] vs 27.7 [17.9–40.4], re-
spectively; p = 0.053), expressing the proliferation
marker Ki67; however, statistical significance was
reached with only the nTregs.
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Frequencies of CD4 and CD8 T-cell maturational subsets
expressing Ki67 according to vaccine responsiveness
We examined CD4 and CD8 T-cell maturational subsets
and the expression of different markers of activation
(HLA-DR), apoptosis susceptibility (CD95), senescence
(CD57), proliferation (Ki67) and suppression (CTLA-4)
in CD4 and CD8 T-cell pools. We found no differences

between the vaccine responsiveness groups in either, the
distribution of the maturational subsets or the
expression of the abovementioned cellular markers
(Additional file 2: Table S2). We also analysed the ex-
pression of Ki67 specifically on the different CD4 and
CD8 maturational subsets to study the proliferation of
these subsets. We observed higher expression of Ki67 in

Table 1 Characterization of the study population. Comparisons between groups regarding the vaccine response to the influenza vaccine

Variable TOTAL
N = 60

Non-Responders
N = 33

Responders
N = 27

p

Age (years) 79 [70–87] 80 [67–88] 77 [71–86] 0.806

Male sex, n (%) 24 (40) 15 (46) 9 (33) 0.340

CD4+ T-cell count
(cells/mm3)

799 [614–1103] 715 [533–1236] 825 [749–1008] 0.281

CD8+ T-cell count
(cells/mm3)

473 [279–685] 439 [159–671] 486 [384–698] 0.185

CD4+/CD8+ ratio 1.8 [1.2–2.3] 1.9 [1.2–2.3] 1.6 [1.1–2.7] 0.704

sj/β TREC ratio 32 [0–50] 31 [0–55] 34 [7–50] 0.615

Thymic failure a 19 (32) 12 (36) 7 (27) 0.441

CMV titre (AU/μL) 25.4 [13.3–40.3] 25.4 [12.4–39.0] 24.6 [13.8–43.0] 0.973

LBP (ng/μL) 12.7 [10.2–14.1] 13.0 [10.1–15.3] 12.7 [11.4–13.5] 0.564

hsCRP (mg/L) 2.8 [1.6–5.0] 2.3 [1.2–4.8] 3.1 [2.2–5.0] 0.330

B2M (μg/mL) 2.5 [2.1–3.5] 2.7 [2.4–3.7] 2.3 [2.0–3.3] 0.156

D-dimers (μg/L) 705 [438–1183] 875 [445–1425] 620 [438–918] 0.082

IL-6 (pg/mL) 3.5 [2.4–4.6] 3.4 [2.3–4.9] 3.6 [2.6–4.5] 0.691

sCD163 (ng/L) 1034 [844–1293] 1034 [792–1224] 1084 [878–1477] 0.222

% Lymphocytes 26.2 [23.2–33.1] 24.9 [22.4–32.0] 29.0 [25.0–34.1] 0.063

% Monocytes 6.5 [5.4–7.6] 6.6 [5.4–7.9] 6.5 [5.4–7.5] 0.894

% Neutrophils 59.6 [54.1–65.7] 62.8 [54.4–66.9] 58.0 [52.4–62.5] 0.089

% Basophils 0.2 [0.2–0.4] 0.3 [0.2–0.4] 0.2 [0.1–0.3] 0.258

% Eosinophils 3.4 [2.2–4.2] 3.2 [1.7–4.5] 3.7 [3.2–4.2] 0.094

Platelets (x10e9/L) 223 [180–294] 233 [181–294] 197 [170–296] 0.650

MCV (fL) 90.2 [86.1–93.6] 90.6 [85.5–93.5] 90.0 [86.6–95.1] 0.876

MPV (fL) 9.4 [7.9–10.1] 9.3 [7.8–10.3] 9.40 [8.1–10.0] 0.716

ESR (mm/h) 12 [6–22] 14 [6–21] 10 [6–24] 0.921

PLR 117 [87–164] 134 [88–166] 113 [82–144] 0.377

NLR 2.3 [1.6–2.9] 2.6 [1.7–3.0] 1.9 [1.5–2.4] 0.056

Comorbidities (numberb) 3 [2–5] 3 [2–5] 3 [2–5] 0.874

Barthel indexc 87 [70–100] 85 [70–100] 90 [70–100] 0.838

< 20 3 (5) 1 (3.8) 2 (6.1)

20–35 2 (3.3) 1 (3.8) 1 (3)

40–55 5 (8.3) 3 (11.5) 2 (6.1)

≥ 60 32 (53.3) 14 (53.8) 18 (54.5)

100 18 (30) 8 (29.6) 10 (30.3)

Continuous variables are expressed as median values [IQR], and categorical variables are expressed as the number of cases (%). Comparisons between the groups
were made using the nonparametric Mann–Whitney U test for continuous variables and the χ2 or Fisher exact test for categorical variables. Variables with a p
value < 0.1 are shown in italics. Variables with a p value < 0.05 were considered statistically significant and are shown in bold. Note: CMV Cytomegalovirus, LBP
Lipopolysaccharide Binding Protein, hsCRP High sensitivity C-Reactive Protein, B2M β2-microglobulin, sCD163 soluble CD163, MCV Mean corpuscular volume, MPV
Mean platelet volume, ESR erythrocyte sedimentation rate, PLR Platelet to lymphocyte ratio, and NLR Neutrophil to lymphocyte ratio. (a) Thymic failure is defined
as an sj/β TREC ratio < 10. bDetails of comorbidities recorded are shown in Additional file 5: Table S5. c100 is totally independent and < 20 is totally dependent
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Fig. 1 (See legend on next page.)
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both the CD4 and CD8 maturational subsets from the
non-responders compared to those from the responders,
and these differences in expression reached statistical
significance for all comparisons (Fig. 2).

Associations among inflammation-related biomarkers, the
expression of Ki67 in T-cells and thymic function
We explored the potential associations of the analysed
inflammation-related biomarkers and haematological
parameters with the expression of Ki67 in different Treg
subsets (naïve Tregs –nTregs– and effector Tregs –
eTregs–) as well as in different CD4 and CD8 T-cell
maturational subsets. Interestingly, we observed positive
associations between Ki67 expression in several T-cell
subsets and Lipopolysaccharide Binding Protein (LBP)
levels, high sensitivity C reactive protein (hsCRP) levels
(e.g., with %eTreg-Ki67+; r = 0.301, p = 0.020), β2-
microglobulin levels (e.g., with %CD4+Ki67+; r = 0.322,
p = 0.010), D-dimer levels (e.g., with %CD4+Ki67+; r =
0.446, p = 0.001), the % monocytes, the % neutrophils
(e.g., with %CD4+EM Ki67+; r = 0.307, p = 0.017), the %
basophils, the platelet to lymphocyte ratio (PLR) and the
NLR, while there were negative associations between the
Ki67 expression in several T-cell subsets and the %
lymphocytes (e.g., with %CD4+EM Ki67+; r = − 0.310,
p = 0.016), % eosinophils, Mean Corpuscular Volume
(MCV) (e.g., with CD8 + TemRA Ki67+; r = − 0.303,
p = 0.019) and Mean Platelet Volume (MPV) (e.g., with
%nTreg Ki67+; r = − 0.550, p < 0.001) (Additional file 3:
Table S3). We also observed associations between
thymic function and the levels of inflammation-related
biomarkers (D-dimers, Erythrocyte Sedimentation Rate
(ESR) and the PLR) as well as a trend with hsCRP levels
(Fig. 3). Moreover, two of the inflammation-related bio-
markers (the ESR and LBP levels) also tended to corre-
lated with the anti-CMV titre (r = 0.313, p = 0.021 and
r = 0.263, p = 0.057; respectively). Nevertheless, as indi-
cated in the Table footnote, not all these associations
remained statistically significant after the Bonferroni
correction for multiple comparisons.
Remarkably, we found higher levels of inflammation-

related biomarkers and expression of Ki67+ in T-cell
subsets and lower thymic function in the subjects who
died during a year-long follow-up (Additional file 4:
Table S4). Six subjects (one responder and five non-
responders) died during this follow-up period as a

consequence of cardiovascular events, and despite
acknowledging the low number of events, we explored
the baseline immune characteristics of these subjects. As
expected, the subjects who died showed higher baseline
levels of hsCRP than those who survived (5.10 [3.70–
7.58] vs 2.60 [1.25–4.30], respectively; p = 0.012). How-
ever, interestingly, we also found higher frequencies of
T-cell subsets, including Tregs, expressing Ki67 in the
subjects who died. Furthermore, the six subjects who
died during the follow-up year had lower thymic func-
tion (0 [0–0] vs. 34 [10–51], respectively; p = 0.001), and
all of these subjects showed a failure in thymic function.
Subjects who died during the follow-up did not show a
statistically higher number of comorbidities, but they
had a higher disability degree.

Discussion
We report that the influenza vaccine responsiveness of an
aged population was associated with age-related homeo-
static dysregulation involving T-cell proliferation in CD4
and CD8 T-cell maturational subsets. Moreover, higher
frequencies of not only CD4 Tregs but also proliferating
Treg subsets were associated with vaccine non-response.
Overall, this homeostatic dysregulation was directly corre-
lated with the inflammatory status in this context.
Tregs are involved in the suppression of the immune

system and prevent a proper antibody response to vac-
cination [19, 20]. Herein, we studied the frequencies and
several functional markers of Treg subsets in relation to
the influenza vaccine response of elderly people. Inter-
estingly, we observed a tendency of higher baseline
frequency of total-Tregs in non-responders than re-
sponders, a comparison that became statistically signifi-
cant when considering the number of subjects in each
group showing a higher than the median Treg fre-
quency. Our results are in line with those of van de
Geest et al. [30], although those authors specifically
found higher frequencies of the effector-Treg subset. As
far as we know, no other previous studies focusing on
baseline Tregs in the elderly in relation to vaccine
responsiveness have been reported. Nevertheless, we
previously showed that human immunodeficiency virus
(HIV)-infected subjects who did not respond to a
hepatitis B virus (HBV) vaccine had a higher baseline
frequency of Tregs than those who did respond [24, 31].
The fact that high baseline Treg frequencies impaired

(See figure on previous page.)
Fig. 1 Characterization of Treg subsets in relation to the response to the influenza vaccine. a-d Frequencies of Treg subsets. e-h Frequencies of
Treg subsets expressing the proliferation marker Ki67+. A total of 60 subjects, within an age range of 61–98 years old (min-max) and median age
of 79 [70–87] (median [IQR]) were included. Comparisons between the groups of vaccine non-responders (n = 33) and responders (n = 27) were
made using the nonparametric Mann–Whitney U test. Variables with a p value < 0.05 were considered statistically significant and are shown in
bold. *After the Bonferroni correction for multiple comparisons, the comparison of % nTregKi67+ did not remain statistically significant. Note:
nTreg, naïve-Treg; and eTreg, effector-Treg
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Fig. 2 Maturational subsets of CD4+ and CD8+ T-cells expressing Ki67+. a-d Frequencies of CD4+ maturational subsets expressing the proliferation
marker Ki67+. e-h Frequencies of CD8+ maturational subsets expressing the proliferation marker Ki67+. Comparisons between the groups of vaccine
non-responders (n = 33) and responders (n = 27) were made using the nonparametric Mann–Whitney U test. Variables with a p value < 0.05 were
considered statistically significant and are shown in bold. *After correction for multiple comparisons by the Benjamini-Hochberg procedure, applying a
10% FDR, all statistical significances remained. Note: CM, central memory; EM, effector memory; and TemRA, terminally differentiated effector memory
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the response to vaccination in the elderly and HIV-
infected subjects reinforces Treg increases in the steady
states of both scenarios as a common feature of immuno-
senescence [27], which could compromise the ability of
the immune system to mount a proper immune response
[21–26, 31]. Further research about the underlying mech-
anism of these immunosenescence-related Treg increases
is needed to develop novel approaches aimed to improve
vaccine responsiveness in these scenarios.
In addition, we observed higher frequencies of Treg

subsets expressing the proliferation marker Ki67 in non-
responders. Heightened Treg proliferation has been
shown in subjects exposed to infectious agents, in indi-
viduals with systemic autoimmunity and within tumours
[32]. Along the same line, proliferating Tregs are associ-
ated with hyperactivation and disease progression in
chronic HIV infection [33]. Furthermore, we found
higher frequencies of all the CD4 and CD8 maturational
subsets expressing the proliferation marker Ki67 in the
non-responders to the influenza vaccine than the
responders. In a recent work, we observed an inverse
association between the magnitude of the HBV vaccine
response and the frequency of proliferating CD4 T-cells
in a cohort of HIV-infected patients [31]. As far as we
know, no other previous evidence has associated a poor
response to vaccination with conventional T-cell prolif-
eration. However, Stervbo et al. reported an age-

dependent association between influenza vaccine re-
sponsiveness and the proliferation of γδ T-cells [34].
The inflammatory status has been consistently shown to

disturb vaccine responsiveness in the elderly [12, 13].
Moreover, hsCRP levels predict herpes zoster vaccine re-
sponses in elderly nursing home residents [35]. Although
we failed to observe higher hsCRP levels in the non-
responders, we observed a tendency towards higher levels
of other inflammation-related markers such as D-dimers,
neutrophils or the NLR in the non-responders. The fact
that the anti-CMV titre was not associated with the re-
sponse to the vaccine deserves a special mention, since
CMV seropositivity has been previously associated with a
negative effect on influenza vaccine responses [36, 37].
Nevertheless, as expected, we observed an association
between the anti-CMV titre and several inflammation-
related biomarkers (the ESR and LBP levels).
Interestingly, the limited CD4 T-cell repertoire diver-

sity in aged individuals, probably a consequence of re-
duced thymic function, has been associated with a poor
response to influenza vaccination in a mouse model
[38]. However, in our cohort, we failed to observe lower
thymic function in the non-responders compared with
the responders. Nevertheless, we observed a higher fre-
quency of ki67+ naïve T-cells, which is a surrogate
marker of T-cell activation and proliferation, in the non-
responders. Along this line, Sauce et al. [16] showed an

Fig. 3 Correlations between the sj/β TREC ratio and inflammation-related biomarkers. a Correlation between sj/β TREC and D-dimers. b
Correlation between sj/β TREC and the ESR. c) Correlation between sj/β TREC and the PLR. d Correlation between sj/β TREC and hsCRP. A total of
60 subjects. Correlations were assessed using Spearman’s rho correlation coefficient. Variables with a p value < 0.1 are shown in italics. Variables
with a p value < 0.05 were considered statistically significant and are shown in bold. *After correction for multiple comparisons by the Benjamini-
Hochberg procedure, applying a 10% FDR, all statistical significances remained. Note: ESR, erythrocyte sedimentation rate; PLR, platelets to
lymphocyte ratio; and hsCRP, high sensitivity C-Reactive Protein
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association between increased naive T-cell turnover and
decreased thymic function in elderly subjects, young
adults thymectomised during early childhood and HIV-
infected subjects. Importantly, despite 30% of our cohort
showing thymic failure, this cohort could globally have a
partially preserved thymic function, which can be appre-
ciated when comparing the thymic function of our
cohort with that of a different elderly population with a
similar age range and thymic function values quantified
by the same technique [39]. Alternatively, the higher
Ki67 expression in the T-cell subsets of the non-
responders could better reflect their inflammatory status,
since we report consistent associations between Ki67
expression and several soluble inflammation-related pa-
rameters. Along this line, previous data link the inflam-
matory environment of HIV infection with increased
memory CD4 T-cell cycling [40]. Thus, reasonably, this
age-dependent homeostatic dysregulation involving T-
cell proliferation could contribute to inflammaging.
Interestingly, we also observed negative associations be-
tween thymic function and the levels of different
inflammation-related biomarkers (mainly D-dimers but
also the ESR, PLR and hsCRP levels), and a relationship
between thymic involution and chronic systemic inflam-
mation has also been previously described [41]. Thus,
one can speculate that in the ageing context, thymic
function and inflammation could be inversely interre-
lated. Accordingly, again in comparison with the cohort
of Ferrando-Martínez et al. [39], our cohort shows a
trend towards a lower inflammatory status while show-
ing higher levels of thymic function.
Our study has several limitations. First of all, this is an

exploratory and descriptive analysis with a relatively
small size and our results need to be corroborated in
higher cohorts. However, it supports and extends
previous observations from aging studies in other
human T-cell subsets and our rough observations raise
interesting new questions in the immunosenescence
topic. Additionally, recording deaths during a year of
follow-up was not an objective of this study, and we got
a low number of events and did not consider potential
confounders for the levels of the biomarkers assessed,
about possible concomitant anti-inflammatory treat-
ments (such as statins or aspirin) for example. However,
it is worth mentioning that the six subjects who died
during the follow-up year showed lower thymic function
but higher proliferation in the T-cell subsets, including
the Treg subsets, as well as higher levels of
inflammation-related biomarkers than those who sur-
vived during this follow-up period. In this sense, hsCRP
levels have been previously associated with time to death
in the elderly, and the risk of death is further elevated
when high hsCRP levels are present in addition to CMV
seropositivity [42] or low thymic function, as we

previously reported [39]. Although we observed a higher
disability degree in those subjects who died during the
follow-up, our findings suggest that both thymic function
and age-dependent homeostatic dysregulation involving
T-cell proliferation (probably as a compensatory mechan-
ism) could be relevant to the underlying mechanisms of
progression to death in elderly people, and larger studies
are encouraged to corroborate this hypothesis.

Conclusions
In summary, age-dependent homeostatic dysregulation
involving the proliferation of CD4 and CD8 T-cell sub-
sets, including Tregs, seem related to a reduced respon-
siveness to influenza vaccination as well as to a higher
inflammatory status in an elderly population. Our data
support and extend previous observations from ageing
studies of other human T-cell subsets and suggest that
further research on the mechanisms underlying such
relationships in the elderly could help to find better
strategies to produce a proper vaccine response against
influenza in this compromised population. Deepening
this knowledge will also be useful to further understand
how immunosenescence limits immune capacities.

Methods
Study design
We included elderly subjects from the Heliopolis Nursing
Home, Seville, who were going to be vaccinated against
influenza virus during November 2015 (the 2015–2016
campaign). Among these subjects, those older than 60
years, without cognitive impairment and able to sign the
informed consent were included in this study. Subjects
treated with antitumour therapy or any treatment that
could influence their immune status (mainly corticoste-
roids) during the preceding 6months were excluded. The
vaccination protocol (Additional file 7: Figure S2) con-
sisted of one intradermal dose of the trivalent influenza
vaccine for the Northern Hemisphere (Intanza 15 μg,
Sanofi Pasteur MSD, Lyon, France) with split and inacti-
vated viruses of the strains: A/California/7/2009
H1N1pdm09, A/Switzerland/9715293/2013 H3N2 and B/
Phuket/30731/2013 Yamagata lineage. Blood samples were
collected pre-vaccination (from 29 to 0 days before the
administration of the vaccine) and post-vaccination (from
12 to 33 days after vaccination) and processed at the
Institute of Biomedicine of Seville, Virgen del Rocío Uni-
versity Hospital. We recorded the comorbid medical con-
ditions for all the nursing home residents included in this
study (details in Additional file 5: Table S5), as well as dis-
ability degree by the Barthel index for Activities of Dayly
Living (ADL); in this score, 100 is totally independent
whereas < 20 is totally dependent. Deaths occurring within
one year after vaccination were recorded, except for one
subject who was lost to follow-up due to a residency
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change. The study was approved by the Ethics Committee
of the Virgen del Rocío University Hospital.

Haemagglutination inhibition (HAI) test and vaccine
responsiveness
Influenza vaccine responses were measured at the
Microbiology Service of the Virgen de las Nieves Univer-
sity Hospital, Granada through an HAI test analysis.
Pre-vaccination and post-vaccination sera were tested
for HAI titres. The standardized antigen for the HAI test
was prepared using the 2015–2016 trivalent influenza
vaccine for the Northern Hemisphere (Influvac, Mylan
Pharmaceuticals, Barcelona, Spain). The standardized
antigen contained 4 haemagglutinin (HA) units per 25 μl
of each of the following inactivated strains: A/California/
7/2009 H1N1pdm09, A/Switzerland/9715293/2013
H3N2 and B/Phuket/30731/2013 Yamagata lineage. The
HAI tests were performed with chicken red blood cells
(RBCs) according to the WHO standard procedures
[30]. Briefly, serum samples were pre-treated with
Receptor Destroying Enzyme (RDE II Seiken, Denka
Seiken Co Ltd., Tokyo, Japan) in order to inactivate non-
specific haemagglutination inhibitors according to the
manufacturer’s instructions. The RDE-treated sera were
diluted 1:10 and then 25 μl was diluted 2-fold in PBS
and incubated at room temperature for 15 min with
25 μl of standardized antigen. Then, 50 μL of standard-
ized RBCs were added to each well and incubated for 30
min at room temperature. The HAI titre was the last
dilution at which haemagglutination was inhibited. Sero-
protection was defined as an HAI titre ≥40. A positive
response was defined as a 4-fold or greater increase in
the HAI titre between the pre- and post-vaccination
serum samples [43]. For the aim of our study, we tested
as a whole the response to all three vaccine strains and
we defined a positive response having responded to at-
least-one of the vaccine strains and a negative response
having no response to any of the vaccine strains. That
way we could discriminate those immune systems
lacking the ability to mount a full immune response to
the vaccination stimuli and those with the capability of
productively react to such stimuli.

Flow cytometry
Peripheral blood mononuclear cells (PBMCs) collected
pre-vaccination were isolated from fresh blood and cryo-
preserved until analysis. The characterization of peripheral
CD4 and CD8 T-cells was performed according to the
distribution of their maturational subsets [naïve
(CD27+CD45RA+), central memory (CD27+CD45RA−),
effector memory (CD27−CD45RA−), terminally differenti-
ated effector memory (TemRA) (CD27−CD45RA+) and
recent thymic emigrants (RTEs; naïve CD31+)]. Our gating
strategy is shown in Additional file 8: Figure S3. We

measured the expression of an activation marker (HLA-
DR), a senescence marker (CD57), an apoptosis suscepti-
bility marker (CD95), a proliferation marker (Ki67) and a
suppression marker (CTLA-4). Representative FACS plots
for Ki67 staining are shown in Additional file 9: Figure S4.
We also identified total-Tregs (CD25hiFoxP3+), naïve-
Tregs (nTregs, CD45RA+FoxP3lo), effector-Tregs (eTregs,
CD45RA−FoxP3hi) and non-Tregs (CD45RA−FoxP3lo) as
previously described by Miyara et al. [44]. We studied the
expression of the abovementioned activation, proliferation
and suppression markers and a functional marker (CD39)
on these Treg subsets.
For immunophenotyping, PBMCs were thawed and

stained with the following surface antibodies: anti-CD31
PE-CF594, anti-CD56 BV510, anti-CD25 BV605, anti-
CD45RA BV650, anti-CD4 BV786, anti-CD3 APC-H7
(BD Biosciences, USA), anti-CD39 FITC, anti-CD57 PE-
Cy7, anti-HLA-DR BV570, anti-CD95 BV711 and anti-
CD27 AF700 (BioLegend, USA). For intracellular
staining, the cells were then fixed and permeabilized
according to the manufacturer’s instructions (FoxP3/
Transcription Factor Staining Buffer, eBioscience, USA)
and intracellularly stained [anti-Ki67 PerCP-Cy5.5, anti-
FoxP3 PE and anti-CTLA4 APC antibodies (BD Biosci-
ences, USA)]. In each experiment, isotype controls for
the antibodies specific for CD39, CD31, CD25, CD95,
Ki67, FoxP3 and CTLA4 were included. The identifica-
tion of viable cells was performed using LIVE/DEAD
fixable Aqua Blue Dead Cell Stain (Life Technologies,
USA). One million cells from each sample were stained,
and a minimum of 100,000 total lymphocyte events were
acquired. Flow cytometry was performed on an LSR For-
tessa (BD Biosciences, USA). Analyses were performed
using FlowJo version 9.3 (TreeStar).

Sj/β-TREC ratio quantification
Thymic function was determined with pre-vaccination
PBMC DNA by quantifying the sj/β-TREC ratio with a
technique previously optimized by our group [43], with
minor modifications. A schematic representation of the
sj/β-TREC ratio quantification protocol is shown in the
original report [45]. Briefly, in the same PCR reaction
tube, the six dβJβ-TREC from cluster one were ampli-
fied, whereas the sj-TREC was amplified in a different
PCR reaction tube. Twenty amplification rounds were
performed to guarantee an accurate quantification at the
real-time PCR step. All amplicons, dβJβ and sj-TREC,
were then amplified together in a second round of PCR
using the LightCycler® 480 System (Roche, Mannheim,
Germany). We defined an sj/β-TREC ratio value lower
than 10 as thymic function failure, since we previously
found that this cutoff could forecast survival in a cohort
of elderly people [39] as well as other clinical endpoints
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such as cytomegalovirus disease after solid organ trans-
plantation [46] or HIV disease progression [47].

Laboratory measurements and assaying soluble
biomarkers
All determinations were performed with pre-vaccination
samples. Absolute numbers of CD4+ and CD8+ T-cells
and percentages of lymphocytes, monocytes, neutrophils,
basophils, eosinophils and platelets were determined
with an Epics XL-MCL flow cytometer (Beckman-
Coulter, Brea, California). The high sensitivity C-reactive
protein (hsCRP) and β2-microglobulin levels were deter-
mined with an immunoturbidimetric sera assay using
Cobas 701 (Roche Diagnostics, Mannheim, Germany).
The D-dimer levels were measured with an automated
latex enhanced immunoassay using plasma samples
(HemosIL D-Dimer HS 500, Instrumentation Labora-
tory, Bedford, Massachusetts). The mean corpuscular
volume (MCV), mean platelet volume (MPV) and
erythrocyte sedimentation rate (ESR) were determined
with a Sysmex XN-200 analyser (Sysmex, Kobe, Japan).
The platelet to lymphocytes ratio (PLR) and neutrophil
to lymphocyte ratio (NLR) were calculated as inflamma-
tory indices.
Serum and plasma samples were aliquoted and stored

at − 20 °C until subsequent analysis of the levels of
Interleukin-6 (IL-6), soluble CD163 (sCD163), and
Lipopolysaccharide Binding Protein (LBP) as well as
anti-CMV IgG antibody titres by colorimetric enzyme-
linked immunosorbent assays (ELISA) according to
manufacturer’s instructions. Specifically, the following
kits were used: IL-6 (Quantikine® HS ELISA, R&D Sys-
tems, Minneapolis, Minnesota), sCD163 (MacroCD163™,
IQProducts, Groningen, The Netherlands), LBP (Human
ELISA kit, Hycult Biotech, Uden, The Netherlands), and
anti-CMV IgG (Cytomegalovirus IgG ELISA Kit,
Abnova, Taiwan, China).

Statistical analysis
Continuous variables were recorded as medians and
interquartile ranges [IQR], and categorical variables were
recorded as the number of cases and percentages.
Comparisons among groups were made using the non-
parametric Mann–Whitney U-test for continuous vari-
ables and the χ2 or Fisher exact test for categorical
variables. Correlations were assessed using Spearman’s
rho correlation coefficient. A p value < 0.05 was consid-
ered statistically significant. Corrections for multiple
comparisons were performed when indicated, by the
Bonferroni Test or the Benjamini-Hochberg procedure,
although both of them yielded similar results. Statistical
analyses were performed using SPSS software (version
22; IBM SPSS, Chicago, USA), and graphs were gener-
ated using Prism (version 5, GraphPad Software, Inc.).

Additional files

Additional file 1: Table S1. Characterization of Treg subsets in relation
to the response to the influenza vaccine. (DOCX 16 kb)

Additional file 2: Table S2. Comparison of CD4 and CD8 T-cell subsets
in groups defined by the vaccine response to the influenza vaccine.
(DOCX 16 kb)

Additional file 3: Table S3. Associations among different inflammation-
related and haematological parameters and the expression of Ki67 in T-
cell subsets. (DOCX 21 kb)

Additional file 4: Table S4. Inflammation-related biomarkers and Ki67
expression in the T-cells of the subjects who died during the follow-up-
year. (DOCX 18 kb)

Additional file 5: Table S5. Comorbid medical conditions recorded for
the study. (DOCX 14 kb)

Additional file 6: Figure S1. Baseline and post-vaccination HAI titres.
Data from the Haemagglutination Inhibition (HAI) test, which was
performed at baseline (circles) and post-vaccination (squares), are shown
as data for the whole population (n = 60) and the groups of influenza
vaccine non-responders (n = 33) and responders (n = 27). Median [IQR]
values are included in the data cells below each case. HAI titres were
measured as a whole as the response to the three vaccine strains as
indicated in the method section. (TIF 234 kb)

Additional file 7: Figure S2. Protocol. Subjects were vaccinated with
one intradermal dose of the trivalent influenza vaccine Intanza (15 μg).
Blood samples were collected pre-vaccination (from 29 to 0 days before
the administration of the vaccine) and post-vaccination (from 12 to 33
days after vaccination). HAI titres were measured in the pre-vaccination
and post-vaccination samples. T-cell immunophenotypes and soluble
biomarkers were measured in the pre-vaccination samples. Deaths
occurring within one year after vaccination were recorded. (TIF 123 kb)

Additional file 8: Figure S3. Gating strategy for the T-cell subsets. The
gating strategy for the different CD4 T-cell subsets (naïve, central
memory, effector memory and TemRA) depending on their expression of
CD27 and CD45RA is represented. (TIF 894 kb)

Additional file 9: Figure S4. Representative FACS plots of ki67 staining.
Treg subsets (naïve and effector Treg) and the non-Treg subsets were
gated on CD4 T-cells depending on their expression of CD45RA and
FoxP3. Then, the percentage of Ki67+ T-cells from each subset was
quantified by using isotype control as it is shown in representative
histograms. (TIF 455 kb)
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