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Abstract

Background: Questions remain about whether inflammation is a cause, consequence, or coincidence of aging. The
purpose of this study was to define baseline immunological characteristics from blood to develop a model in
rhesus macaques that could be used to address the relationship between inflammation and aging. Hematology,
flow cytometry, clinical chemistry, and multiplex cytokine/chemokine analyses were performed on a group of 101
outdoor-housed captive rhesus macaques ranging from 2 to 24 years of age, approximately equivalent to 8 to 77
years of age in humans.

Results: These results extend earlier reports correlating changes in lymphocyte subpopulations and cytokines/
chemokines with increasing age. There were significant declines in numbers of white blood cells (WBC) overall, as
well as lymphocytes, monocytes, and polymorphonuclear cells with increasing age. Among lymphocytes, there
were no significant declines in NK cells and T cells, whereas B cell numbers exhibited significant declines with age.
Within the T cell populations, there were significant declines in numbers of CD4+ naïve T cells and CD8+ naïve
T cells. Conversely, numbers of CD4+CD8+ effector memory and CD8+effector memory T cells increased with age.
New multiplex analyses revealed that concentrations of a panel of ten circulating cytokines/chemokines, IFNγ, IL1b,
IL6, IL12, IL15, TNFα, MCP1, MIP1α, IL1ra, and IL4, each significantly correlated with age and also exhibited
concordant pairwise correlations with every other factor within this group. To also control for outlier values, mean
rank values of each of these cytokine concentrations in relation to age of each animal and these also correlated
with age.

Conclusions: A panel of ten cytokines/chemokines were identified that correlated with aging and also with each
other. This will permit selection of animals exhibiting relatively higher and lower inflammation status as a model to
test mechanisms of inflammation status in aging with susceptibility to infections and vaccine efficacy.

Keywords: Inflammation, Inflamm-aging, Cytokine, Chemokine, Multiplex, Rhesus macaque, Aging, Animal model,
Immune senescence, Blood
Background
The elderly are at higher risk of suffering from morbidity
and mortality associated with infectious diseases and can-
cer, especially as immune competence wanes. Immune
senescence also contributes to a decline in vaccine efficacy
in the elderly that poses a tremendous challenge to public
health, particularly as the population of persons over 65
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years of age is growing [1-3]. Defining immunologic
markers that predict an individual’s resistance or suscepti-
bility to age-related illness is expected to improve imple-
mentation of public and medical health measures. A
hallmark of immune senescence is chronic inflammation
or “inflamm-aging”, but it is unclear if or how chronic in-
flammation in the elderly contributes to increasing sus-
ceptibility to infections and cancer, or declines in vaccine
efficacy [4-6].
Nonhuman primate rhesus macaques (Macaca mulatta)

are commonly used in biomedical research because of
they are phylogenetically and physiologically related to
humans [7]. Macaques are susceptible to nearly identical
infections and diseases as humans, and thus are important
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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for preclinical vaccine and drug testing prior to applica-
tion in humans. The average and maximum lifespans of
rhesus macaques are approximately 25 years and 40 years,
respectively [8]. Humans in resource-rich countries aver-
age approximately 80 years in life-span with a maximal
survival time reported at 120 years, that represents an esti-
mated 3.2-fold difference for relating age between humans
and rhesus macaques [5,8,9].
In this report, a cross-sectional experimental design was

applied to characterize basic clinical and immunological
correlates in blood specimens of outdoor-housed rhesus
macaques ranging from 2.2 to 24 years of age at the
Tulane National Primate Research Center in Covington,
LA USA. Levels of blood cell populations and circulating
cytokines/chemokines were identified that significantly
correlated individually and in combinations with age. The
results provide a model to compare chronologically older
nonhuman primates exhibiting relatively higher levels of
“inflamm-aging” cytokines/chemokines with age-matched
animals expressing relatively lower levels of these cyto-
kines/chemokines to test hypotheses relating chronic in-
flammation to vaccine efficacy as well as susceptibility
from infectious diseases and cancer during aging.

Methods
Nonhuman primates, venipuncture, hematology, and
blood chemistry
Rhesus macaques (Macaca mulatta) were housed in
outdoor field cages at the Tulane National Primate
Research Center in Covington, LA USA. Procedures for
venipuncture and physical examination were performed
during biannual preventive medicine evaluations under
anesthesia to minimize stress and were approved by the
Institutional Animal Care and Use Committee of Tulane
University in accordance with the Guide for the Care
and Use of Laboratory Animals of the National Institutes
of Health (NIH). The rhesus macaques used in this study
are part of the specific pathogen-free colony (SPF) and
as part of the biannual preventive medicine surveillance,
are tested twice per year to assure that they are sero-
negative for SIV, SRV, Herpes B virus and STLV and
PCR negative for SRV. Routine clinical examinations
(bacteriology, parasitology, hematology, blood chemistry)
are performed as well, and animals are treated accord-
ingly. Hematology was performed on EDTA-preserved
blood using the Advia 120 instrument (Siemens Health-
care Diagnostics, Inc., Tarrytown, NY) and serum clinical
chemistry was performed using the Beckman Olympus
AU400e (Brea, CA).

Flow cytometry
EDTA-preserved whole blood was stained for flow cyto-
metric analysis, and the following mAbs were used in
this study: CD3 (Alexa Fluor 700 and Pacific Blue, clone
SP34-2, BD Biosciences, San Jose, CA), CD4 (PerCP-Cy5.5,
clone L200, BD Biosciences), CD8 (AmCyan, clone SK1,
BD Biosciences), CD20 (APC-H7, clone 2H7, BD Bios-
ciences), CD20 (ECD, clone B9E9, Beckman Coulter, Brea,
CA), CD28 (ECD, clone 28.1, Beckman Coulter), CD95
(APC, clone DX2, BD Biosciences), TCR Vδ2 (FITC, clone
15D, Pierce Biotechnology, Rockford, IL), TCR-γδ (PE,
clone SA6.E9, Invitrogen, Life Technology, Grand Island,
NY) and NKG2a (APC, clone Z199, Beckman Coulter).
One hundred microliters of blood were stained with anti-
bodies for 20 min at the room temperature and red blood
cells (RBC) were then lysed with 1× FACS lysing solution
(BD Biosciences). After washing the cells twice with
phosphate-buffered saline (PBS) containing 2% FBS, the
cells were fixed with PBS containing 1% formaldehyde
(Sigma, St. Louis, MO). Results were acquired on a LSR II
(BD Biosciences) and analyzed using FlowJo software
(TreeStar, Inc., Ashland, OR).

Cytokine quantification
EDTA-preserved plasma samples were centrifuged
(14,000 × g for 5 minutes) and aliquots were frozen at
−80°C until used. Prior to assay, once-thawed plasma sam-
ples were pre-cleared using Ultrafree Centrifugal Filters
(Millipore, Billerica, MA). Cytokine levels were measured
using the Milliplex MAP Non-Human Primate Cytokine
Panel (Milllipore, Billerica, MA) or the Monkey Cytokine
Magnetic 28-Plex Panel (Invitrogen, Life Technologies)
according to manufacturer’s instructions. The reactions in
microtiter plates were read on a Bioplex-200 system in-
strument and results were calculated using BioPlex soft-
ware version 6 (BioRad, Hercules, CA).

Statistical analyses
Pearson correlation coefficients were calculated to com-
pare each test variable in relation to age of the monkeys.
Paired comparisons between means of specified groups
were calculated by Student’s t Test, and Fisher’s r-to-z
transformation was performed to compare correlation
coefficients between males and females. Analyses were
performed and graphed using Graphpad Prism version
5.00 for Windows (GraphPad Software, San Diego
California USA, www.graphpad.com), and P < 0.05 was
considered significant.

Results
Study group
The study population consisted of 101 rhesus macaques
ranging from 2 – 24 years of age (Table 1) and included
22 males and 79 females comparably distributed between
three groups ranging from 2 – 9 (younger), 10 – 17
(middle), and 18 – 24 (older) years of age. Based on an
estimated 3.2-fold age differential between rhesus maca-
ques and humans [5,8,9], the age ranges of the study
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Table 1 Study group of rhesus macaques

Study group Males Females Total

Age of monkeys
(human age equivalent)a

Younger NHPs 7 25 32

2 – 9 years

(7 – 29 years)

Middle-age NHPs 7 28 35

10 – 17 years

(32 – 55 years)

Older NHPs 8 26 34

18 – 24 years

(58 – 77 years)

Total 22 79 101

Mean age 13.41 13.15 13.21

St. dev. 7.08 5.41 5.77
a Equivalent human ages were estimated as a 3.2-fold difference from rhesus
macaque ages.
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groups of monkeys were approximately equivalent to
humans of 8 –30 years in the younger group, 31 – 56
years in the middle group, and 57 – 77 years in the older
group. There was no significant difference in the mean
ages of males and females used in the study. Animals
greater than 24 years of age were not included in this
Table 2 Relationship between hematology values and age in

Testa Correlation
coefficient (r)b

P

Younger group
(2–9 years)

RBC −0.1359 n.s.d 5.64 ± 0.44

Hgb −0.1145 n.s. 12.58 ± 0.85

Hct −0.1276 n.s. 39.47 ± 3.22

MCV 0.0766 n.s. 70.01 ± 2.85

MCH −0.0011 n.s. 22.33 ± 0.96

MCHC −0.1029 n.s. 31.89 ± 0.94

RDW 0.0055 n.s. 13.49 ± 1.00

Platelets −0.1364 n.s. 4.04 ± 0.89

MPV 0.0613 n.s. 9.28 ± 0.92

WBC −0.1768 0.0380 10.68 ± 5.97

Lymphocytes −0.3052 0.0002 2.78 ± 1.18

Monocyte −0.1989 0.0170 0.47 ± 0.24

Neutrophils −0.2555 0.0020 7.07 ± 5.72

Eosinophils −0.2710 0.0010 0.36 ± 0.29

Basophils −0.3525 < 0.0001 0.04 ± 0.03
a Abbreviations of tests; RBC, red blood cells; Hgb, hemoglobin, Hct, hematocrit; MC
mean corpuscular hemoglobin concentration; RDW, red blood cell distribution widt
b Pearson correlation coefficients were calculated for each hematology test over ag
c Mean values of hematology tests were calculated for all animals and within group
significant differences between the older and younger groups of animals. P < 0.05
d Not significant, n.s.
report to preclude effects of chronic diseases of aging on
immune correlates in blood and to prevent skewing of
results from death of frail older animals.
Hematology
Correlation coefficients between hematology values and
age overall, as well as comparisons between mean values
of the three age groups are shown in Table 2. Among
the erythrocyte-related tests [red blood cells (RBC),
hemoglobin (Hgb), hematocrit (Hct), mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH),
mean corpuscular hemoglobin concentration (MCHC),
and red blood cell distribution (RDW)], there were no
statistically significant correlation coefficients with age
and no statistically significant differences between the
younger and older age groups. Mean Hct levels (12.23 ±
1.26 vs 13.05 ± 1.01 g/dL; P = 0.006) and MCV values
(37.96 ± 5.50 vs 40.53 ± 2.83 %; P = 0.0374) were signifi-
cantly lower in females than males, respectively, but
there were no significant differences in correlation coef-
ficients over age between males and females using r-to-z
transformation. Numbers of platelets and MPV did not
exhibit statistically significant correlations with age, and
there were no significant differences in mean values be-
tween males and females within each age group or after
comparing correlation coefficients between genders.
rhesus macaques

Mean values (± St. Dev.)

Middle group
10–17 years

Older group
18–24 years

P c Units

5.59 ± 0.53 5.5 ± 0.61 n.s. x 106 / μL

12.59 ± 1.31 12.3 ± 1.3 n.s. g / dL

39.22 ± 3.55 37.96 ± 6.48 n.s. %

70.35 ± 3.55 70.49 ± 3.79 n.s. fL

22.60 ± 1.61 22.28 ± 1.79 n.s. pg/cell

32.11 ± 1.17 31.58 ± 1.59 n.s. g / dL

13.22 ± 2.62 13.61 ± 1.25 n.s. %

3.86 ± 0.93 3.69 ± 1.20 n.s. x 105 / μL

8.90 ± 2.17 9.19 ± 1.311 n.s. fL

9.72 ± 4.56 6.68 ± 2.94 0.0007 x 103 / μL

2.70 ± 1.30 2.12 ± 0.66 0.0052 x 103 / μL

0.42 ± 0.16 0.36 ± 0.14 0.0221 x 103 / μL

6.01 ± 4.38 4.03 ± 2.96 0.0068 x 103 / μL

0.29 ± 0.26 0.18 ± 0.15 0.0017 x 103 / μL

0.03 ± 0.03 0.02 ± 0.01 0.0004 x 103 / μL

V, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC,
h; MPV, mean platelet volume; WBC, white blood cells.
e of the rhesus macaques. P < 0.05 was considered statistically significant.
s of rhesus macaques. Student’s t Test was measured to determine statistically
was considered statistically significant.
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Significant inverse correlations were observed between
numbers of white blood cells (WBC), polymorpho-
nuclear cells (neutrophils, basophils, and eosinophils)
and mononuclear cells (monocytes and lymphocytes)
with age. In addition, mean levels of these blood cell
populations were statistically significantly lower in the
older group compared with respective means in the
younger group of animals. Comparisons of mean values
within each age group revealed no statistically significant
differences between males and females. Correlation coeffi-
cients were compared between genders using r-to-z trans-
formation and were significantly lower in females than
males for declining levels of circulating WBC (Z = −2.85;
p = 0.0044) and neutrophils (Z = −2.02; P = 0.0434) with
increasing age.

Lymphocyte subpopulations in blood
A statistically significant inverse correlation (r =
−0.3122; P = 0.0009) was observed between circulating
numbers of lymphocytes with age of rhesus macaques,
and flow cytometry was then applied to evaluate
lymphocyte subset populations from 34 of the rhesus
macaques (Figure 1). No statistically significant correla-
tions were seen in levels of circulating CD3+ T cells or
NK cells in relation to age, but a statistically significant
inverse correlation was observed between CD20+ B cells
with increasing age (r = −0.6370; P < 0.0001). There
Figure 1 Relationships between peripheral blood mononuclear cells a
were obtained as part of the CBC measurements from all animals in the stu
CD20-CD8+NKG2a+), T cells (CD3+CD20-) and B cells (CD3-CD20+) from a
coefficients (r values) were calculated between cell number and age of the
were no statistically significant differences in correlation
coefficients or mean levels of the lymphocyte popula-
tions between males and females.
T cell subpopulation levels that were further evaluated

by flow cytometry are shown in Figure 2. As shown in
the left panel of graphs, no statistically significant cor-
relation was observed between CD4+ T cells overall
and age. Within the CD4+ T cell population, however, a
significant inverse correlation was measured between
CD4+ naïve T cells and age (r = −0.4261; P = 0.0059)
whereas no statistically significant correlations were
observed between CD4+ effector memory or CD4+
central memory T cells and age. There were no statisti-
cally significant gender differences in mean levels or
correlation coefficients of CD4+ T cells overall or sub-
set populations.
No statistically significant correlations were measured

between CD8+ T cells overall or CD8+ central memory
T cells with age as shown in the middle panel of Figure 2.
A statistically significant inverse correlation was
observed between CD8+ naïve T cells over age (r = −0.4102;
P = 0.0160), and a statistically significant direct correlation
was seen between CD8+ effector memory T cells and age
(r = 0.378; P = 0.0277) that also was greater among males
than females (Z = 3.13; P = 0.0017). There were no statis-
tically significant differences, however, in mean levels of
the CD8+ T cell subpopulations between genders.
nd age of rhesus macaques. Peripheral blood lymphocyte values
dy group. Flow cytometry was applied to measure NK cells (CD3-
subset of 34 monkeys of the study group. Pearson correlation
animals, and P < 0.05 was considered statistically significant.



Figure 2 Relationships between T cell subpopulations and age of rhesus macaques. Blood was recovered from 34 rhesus macaques,
stained, and analyzed for T cell subpopulations by flow cytometry. Naïve cells were CD28+ and CD95-, central memory cells were CD28+ and
CD95+, and effector memory cells were CD28- and CD95+ [10]. Pearson correlation coefficients were calculated between cell number and age of
the animals, and P < 0.05 was considered statistically significant.
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Statistically significant direct correlations were ob-
served between CD4+CD8+ double-positive (DP) T
cells overall (r = 0.3955; P = 0.0206) and DP effector
memory T cells (r = 0.3847; P = 0.0247) over age
(Figure 2, right panel). No statistically significant cor-
relations were measured between DP central memory
and DP naïve cells with age. There also were no statisti-
cally significant differences between genders when com-
paring means of each of the DP T cell populations.
Males, however, exhibited significantly higher correlation
coefficients than females for DP T cells overall (Z = 1.99;
P 0.0477) and DP effector memory T cells (Z = 2.21;
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P = 0.0271) over age. Levels of TCR δ2+ γδ T cells
and TCR δ2- γδ Tcells exhibited no statistically significant
correlation with age and there were no significant differ-
ences between genders when comparing mean levels of
these cells or correlation coefficients (not shown).
Blood chemistry
Blood chemistry analyses of this study population are pre-
sented in Table 3 and statistically significant inverse correla-
tions were observed for albumin (r = −0.2276; P = 0.0410),
creatinine (r = −0.2763; P = 0.0310), and aspartate trans-
aminase (r = −0.3126; P = 0.005) with increasing age.
Mean aspartate transaminase levels were significantly
lower in the older group of 18–24 year-old animals com-
pared to the younger 2–9 year-old group. Males expressed
significantly lower correlation coefficients than females
for albumin (Z = −2.30; P = 0.0214) and albumin/globulin
(Z = −3.17; P =0.0015) with age. Conversely, females
expressed a significantly lower correlation coefficient than
males for creatinine (Z = −2.60; P = 0.0093) with age. No
significantly different correlation coefficients were observed
between genders for the other blood chemistry values
measured.
Plasma cytokines
Correlation coefficients and mean plasma concentra-
tions of cytokines in the younger, middle, and older age
groups of rhesus macaques are shown in Table 4.
Among the pro-inflammatory cytokines, IFNγ, IL1β,
IL6, IL12/IL23(p40), IL15, MIF, sCD40L, and TNFα,
Table 3 Relationship between blood chemistry values over ag

Test Correlation
coefficient (r)a

P

Younger g
(2–9 yea

Sodium (Na) −0.0835 n.s.c 147.80 ± 3

Potassium (K) −0.0278 n.s. 3.86 ± 0

Chloride (Cl) 0.1830 n.s. 109.00 ± 2

Total protein −0.2026 n.s. 7.01 ± 0

Albumin −0.2276 0.041 3.83 ± 0

Globulins 0.1124 n.s. 3.18 ± 0

Albumin/Globulins −0.1284 n.s. 1.26 ± 0

Blood Urea Nitrogen (BUN) −0.2017 n.s. 22.05 ± 9

Creatinine −0.2763 0.031 0.88 ± 0

BUN/Creatinine 0.1373 n.s. 25.52 ± 8

Glucose 0.1240 n.s. 60.72 ± 1

Alanine Transaminase −0.0125 n.s. 29.04 ± 1

Aspartate Transaminase −0.3126 0.005 46.63 ± 1
a Pearson correlation coefficients were calculated for each hematology test over ag
b Mean values of hematology tests were calculated for animals in the three age gro
statistically significant differences between the older and younger groups of anima
c Not significant = n.s.
exhibited statistically significant direct correlations with
age whereas circulating levels of IL17 did not correlate
with age. In addition, mean levels of circulating IL1β,
IL12/IL23(p40), sCD40L, and TNFα were statistically
significantly higher in the older group of monkeys aged
18 – 24 years of age than in the younger group of
monkeys aged 2 – 9 years of age. Results of four pro-
inflammatory cytokines commonly associated with
aging, IFNγ, IL6, IL12/IL23(p40), and TNFα were plot-
ted in Figure 3. Of interest was the greater variability of
cytokine levels in the older group of animals. For ex-
ample, circulating levels of IFNγ and IL6 exhibited sta-
tistically significant direct correlations with age, but
mean levels in the younger and older groups were not
statistically significantly different due to the high stand-
ard deviations in the older group. Among all the pro-
inflammatory cytokines assayed and listed in Table 4,
there were no significant differences when comparing
mean concentrations between the younger age group
and middle age groups, suggesting that the shifts to
higher expression of these cytokines occurred during
the transition from the middle to older age groups.
Mean concentrations and correlation coefficients of
these pro-inflammatory cytokines over age did not sig-
nificantly differ between genders.
Among the chemokines tested, circulating levels of

IL8, MCP1, MIP1α, and MIP1β significantly correlated
directly with age and with the exception of MIP-1β,
mean concentrations of these factors were significantly
higher in the older group than in the younger group of
monkeys. Conversely, a significant inverse correlation
e in rhesus macaques

Mean values (± St. Dev.)

roup
rs)

Middle group
(10–17 years)

Older group
(18–24 years)

P b Units

.23 147.04 ± 3.55 147.40 ± 3.41 n.s. mMol/L

.60 3.65 ± 0.36 3.90 ± 0.45 n.s. mMol/L

.98 108.42 ± 5.16 110.70 ± 4.03 n.s. mMol/L

.60 6.95 ± 0.56 6.80 ± 0.75 n.s. g/dL

.05 3.75 ± 0.50 3.60 ± 0.69 n.s. g/dL

.58 3.20 ± 0.52 3.10 ± 0.55 n.s. g/dL

.36 1.22 ± 0.28 1.20 ± 0.35 n.s.

.47 21.17 ± 5.98 19.30 ± 7.33 n.s. mg/dL

.19 0.89 ± 0.28 0.80 ± 0.32 n.s. mg/dL

.94 24.93 ± 7.09 27.60 ± 8.89 n.s.

9.22 68.23 ± 22.84 64.40 ± 23.59 n.s. mMol/L

4.66 32.35 ± 14.52 36.90 ± 18.34 n.s. IU/L

8.38 37.88 ± 16.03 37.50 ± 18.38 0.0415 IU/l

e of the rhesus macaques. P < 0.05 was considered statistically significant.
ups of rhesus macaques. Student’s t Test was measured to determine
ls. P < 0.05 was considered statistically significant.



Table 4 Relationship between plasma cytokine levels and age in rhesus macaques

Category
cytokine

All animals Mean concentration ± st. dev. (pg/ml) P b

Correlation
coefficient ( r )a

P Younger group
(2–9 years)

Middle group
(10–17 years)

Older group
(18–24 years)

Pro-inflammatory / Th1 induction:

IFN-γ 0.2569 0.0085 27.29 ± 24.40 26.59 ± 24.09 59.99 ± 107.04 n.s.c

IL-1β 0.2704 0.0055 10.06 ± 14.18 10.19 ± 15.57 16.67 ± 18.18 0.0457

IL-6 0.2163 0.0290 2.89 ± 3.69 3.42 ± 3.94 6.18 ± 11.31 n.s.

IL-12/IL-23 (p40) 0.3004 0.0019 240.91 ± 335.77 245.70 ± 339.13 443.50 ± 564.21 0.0492

IL-15 0.2792 0.0045 11.25 ± 9.05 11.55 ± 8.80 16.05 ± 13.57 n.s.

IL-17 0.0281 n.s. 2.81 ± 5.72 2.15 ± 5.20 2.97 ± 12.88 n.s.

MIF 0.5151 0.0036 130.19 ± 61.89 371.06 ± 293.29 624.15 ± 598.64 n.s.

sCD40L 0.3621 0.0016 2,731.76 ± 4,072.20 2,644.32 ± 3,646.08 5,874.23 ± 4,435.26 0.0025

TNF-α 0.3407 0.0004 28.40 ± 35.51 30.71 ± 42.78 62.28 ± 62.43 0.0376

Chemokines:

Eotaxin (CCL11) 0.1865 n.s. 441.49 ± 92.46 738.88 ± 345.51 635.78 ± 370.24 n.s.

IL-8 (CXCL8) 0.2165 0.0280 1,273.54 ± 2,115.97 1,538.39 ± 2,287.07 3,970.65 ± 7,165.05 0.0345

I-TAC (CXCL11) −0.0762 n.s. 111.86 ± 241.19 140.35 ± 198.89 92.71 ± 116.12 n.s.

MCP-1 (CCL2) 0.2644 0.0067 318.35 ± 176.44 338.75 ± 236.98 400.60 ± 190.78 0.0270

MDC (CCL22) 0.1279 n.s. 934.06 ± 626.64 1,657.17 ± 729.31 1,220.65 ± 1,113.48 n.s.

MIG (CXCL9) −0.4799 0.0073 112.82 ± 24.23 120.31 ± 22.89 83.66 ± 13.81 0.0019

MIP-1α (CCL3L1) 0.2877 0.0031 23.64 ± 20.58 25.07 ± 22.63 36.69 ± 33.56 0.0466

MIP-1β (CCL4) 0.0786 0.0108 19.84 ± 19.56 15.33 ± 15.74 24.78 ± 37.63 n.s.

RANTES (CCL5) 0.2065 n.s. 16,617.28 ± 8,693.23 43,928.17 ± 61,521.00 38,343.38 ± 56,904.69 n.s.

Growth factors:

EGF 0.6582 < 0.0001 33.80 ± 6.86 85.33 ± 126.15 321.85 ± 148.42 <0.0001

FGF-basic 0.4038 0.0269 13.24 ± 2.59 13.85 ± 2.14 20.05 ± 8.54 n.s.

G-CSF 0.3179 0.0011 73.69 ± 94.41 77.18 ± 94.45 115.94 ± 111.56 0.0258

GM-CSF 0.0162 n.s. 83.77 ± 247.97 93.94 ± 273.92 74.80 ± 210.17 n.s.

HGF 0.1149 n.s. 107.24 ± 23.63 148.00 ± 73.14 136.17 ± 107.81 n.s.

IL-2 0.4062 < 0.0001 75.93 ± 84.58 87.88 ± 72.09 162.49 ± 131.83 0.0004

TGF-α 0.2533 0.0318 9.28 ± 7.64 7.50 ± 6.30 13.75 ± 8.05 0.0258

TGF-β1 0.1896 n.s. 17,577.10 ± 7,978.62 16,257.61 ± 7,884.94 22,025.53 ± 8,156.91 n.s.

TGF-β2 0.1043 n.s. 2,252.57 ± 1,121.62 2,113.75 ± 1,141.93 2,493.74 ± 847.81 n.s.

TGF-β3 −0.3218 0.0457 27.66 ± 13.09 17.57 ± 9.15 19.46 ± 9.79 n.s.

VEGF 0.0380 n.s. 91.90 ± 164.42 77.34 ± 158.25 105.50 ± 169.99 n.s.

Anti-inflammatory / B cell and Th2 induction:

IL-1ra 0.3533 0.0002 195.35 ± 393.17 212.41 ± 352.53 466.24 ± 559.77 0.0126

IL-4 0.3496 0.0003 73.18 ± 144.16 86.82 ± 157.78 170.45 ± 197.72 0.0120

IL-5 −0.3003 0.0022 4.45 ± 5.63 3.28 ± 4.46 1.51 ± 2.37 0.0021

IL-10 0.1017 n.s. 4.60 ± 4.33 5.73 ± 9.92 6.35 ± 9.52 n.s.

IL-13 0.2172 n.s. 2.37 ± 1.96 3.76 ± 4.62 4.05 ± 6.28 n.s.
a Pearson correlation coefficients were calculated for each circulating cytokine concentration over age of the rhesus macaques. P < 0.05 was considered
statistically significant.
b Means of circulating cyotokine concentration were calculated for the three age groups of rhesus macaques. Student’s t Test was measured to determine
statistically significant differences between the older and younger groups of animals. P < 0.05 was considered statistically significant.
c n.s.; not significant.
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Figure 3 Relationships between concentrations of selected circulating pro-inflammatory cytokines and age of each rhesus macaque in
the study group. Pearson correlation coefficients were calculated between each circulating cytokine concentration and age as shown in the left
panel. Student’s t Test was used to compare means of circulating cytokine concentrations between the three age groups of monkeys. P < 0.05
was considered statistically significant.
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was observed in levels of MIG with increasing age and
the mean concentration of MIG in the older animals
was significantly lower than in the younger age group.
No significant correlations or mean differences in circu-
lating levels of I-TAC, MDC, or RANTES were observed
with age or between age groups, respectively. There also
were no significant differences in means or correlation
coefficients of these chemokine concentrations over age
between males and females.
Concentrations of the growth factors, EGF, FGF-basic,

G-CSF, IL2, and TGFα significantly correlated directly
with age. Mean circulating levels of these growth factors
also were statistically significantly higher in the older
group than the younger group, with the exception that
FGF-basic, although expressed at higher levels in the older
group, exhibited a wide standard deviation to preclude
reaching statistical significance. Conversely, TGFβ3 con-
centrations inversely correlated with age. There were no
statistically significant correlation coefficients over age or
significant differences in mean concentrations between
the older and younger groups when evaluating GM-CSF,
HGF, TGFβ1, TGFβ2, and VEGF. No gender differences
were observed in correlation coefficients over age or mean
concentrations between the older and young age groups
for all of the growth factors assayed.
Among the anti-inflammatory cytokines, levels of

IL1ra and IL4 significantly correlated directly with age,
and mean concentrations were significantly higher in the
older than younger group of animals. IL5 levels signifi-
cantly correlated inversely with age and mean levels
were significantly lower in the older group than the
younger group of animals. Circulating levels of IL10 and
IL13 did not correlate with age. There also were no dif-
ferences between genders in correlation coefficients with
age or mean levels of the anti-inflammatory cytokines.
To identify a group or panel of cytokines/chemokines

expressed in levels that correlated to each other and in
relation to aging, pairwise Pearson’s correlation analysis
was performed among the circulating cytokines tested in
common to both multiplex kits in the study (Table 5). A
set of ten cytokines was identified that exhibited statisti-
cally significant correlation coefficients in each pairwise
comparison within the group. These concordant cyto-
kines included eight pro-inflammatory cytokines and
chemokines, IFNγ, IL1β, IL6, IL12, IL15, TNFα, MCP1,
and MIP1α, (inside boxed area), as well as two anti-
inflammatory cytokines, IL1ra and IL4 (external boxed
area).
Rhesus macaques, like humans, are outbred species

and can express highly variable cytokine responses. As a
result, incidentally high or low outlier concentrations of
any single cytokine/chemokine in an individual animal
may affect significance of correlation coefficients and
comparison of means. This was also evident by the
higher standard deviations in mean concentrations of
several cytokines expressed in the older group of ani-
mals. To corroborate the pairwise correlation analysis
and adjust for the possible effect of potential outlier cyto-
kine/chemokine concentrations, animals were ranked
from 1 (lowest concentration rank) to 101 (i.e. highest
concentration rank based on the total number of animals
tested in this study) for each cytokine expressing a positive
correlation coefficient with age (and in reverse if expres-
sing a negative correlation with age) and tied rankings
were given the median rank for that range of animals.
Mean ranks for the concordant pairwise cytokines asso-
ciated with aging, as well as the non-concordant factors,
were plotted in relation to age in Figure 4. A statistically
significant correlation was observed between the mean
rankings of the ten concordant cytokines identified in
Table 5 over age (r = 0.2529; P = 0.0096) whereas no cor-
relation was observed between mean ranks of the
remaining non-concordant cytokines and age (r=0.12;
n.s.). In addition, the mean rankings of the traditional in-
flammatory cytokines associated with aging, namely IFNγ,
IL1β, IL6, IL12, and TNFα also exhibited a statistically
significant correlation (r=0.1990; P = 0.0428; not shown)
but this was less robust than the correlation expressed by
the panel of ten pairwise concordant cytokine identified
on Table 5.

Discussion
For probably the first time in history, persons over the
age of 65 outnumber children under 5 years of age [5].
With increasing life expectancy however, there has oc-
curred an increase in infectious disease severity, neopla-
sia, and autoimmune disease as a consequence of
immune senescence in the elderly [2,3]. This poses chal-
lenges to public health and medical care in the elderly
for vaccination against infectious diseases and treatment
of chronic diseases, respectively. For example, influenza
and pneumonia are among the top ten causes of death
in the elderly, yet influenza vaccination is only 17 – 53%
effective in elderly adults compared to 70 – 90% efficacy
in younger adults [11]. Defining mechanisms of immune
senescence is expected to help generate intervention
therapies and establish predictive markers to identify
those individuals requiring supportive strategies such as
vaccine boosting, for example.
Nonhuman primates provide a vital link for translating

basic science research to applications in humans for
improving well-being in the elderly [7,12]. Advantages to
using nonhuman primates include genetic homology,
physiology, behavior, and responses to infections and di-
seases that are shared with humans. In addition, nonhu-
man primates are outbred, and outdoor-housed animals
accumulate environmental exposures similar to humans
[9,13]. Clinical, medical, and pedigree information is



Table 5 Pairwise Pearson correlation between circulating cytokine and chemokine levels in rhesus macaquesa

IFN-γ IL-1β IL-6 IL-12/ 23 (p40) IL-15 TNF-α MCP-1 MIP-1α IL-1ra IL-4 MIP-1β IL-17 MIF Eotaxin IL-8 I-TAC MDC MIG RANTES

IFN-γ

IL-1β 0.406

IL-6 0.725 0.425

IL-12/23(p40) 0.408 0.763 0.341

IL-15 0.476 0.853 0.434 0.768

TNF-α 0.668 0.470 0.438 0.534 0.527

MCP-1 0.276 0.637 0.332 0.466 0.561 0.286

MIP-1α 0.689 0.788 0.664 0.712 0.779 0.582 0.507

IL-1ra 0.377 0.855 0.376 0.893 0.843 0.509 0.597 0.772

IL-4 0.320 0.932 0.395 0.814 0.828 0.441 0.626 0.771 0.927

MIP-1β 0.723 0.449 0.565 0.374 0.445 0.184 0.262 0.690 0.355 0.351

IL-17 0.075 0.174 −0.003 0.575 0.317 0.155 0.132 0.306 0.475 0.226 0.166

MIF −0.086 0.263 −0.221 0.008 0.054 0.096 −0.063 −0.013 0.177 0.456 −0.092 0.015

Eotaxin 0.344 0.933 0.113 −0.271 0.298 0.239 0.672 0.366 −0.170 −0.202 0.278 −0.155 0.163

IL-8 −0.112 −0.355 −0.094 −0.285 −0.317 −0.085 −0.029 −0.331 −0.308 −0.329 −0.303 −0.115 0.513 −0.125

I-TAC 0.443 0.222 0.425 −0.143 0.518 0.070 0.397 0.473 0.241 −0.233 0.356 0.148 0.094 0.393 −0.070

MDC −0.102 −0.160 −0.245 −0.034 −0.108 −0.125 −0.171 −0.171 0.086 0.142 −0.071 −0.126 −0.029 −0.211 0.024 −0.137

MIG 0.039 0.191 −0.128 0.349 0.097 0.376 0.079 −0.006 −0.259 −0.376 0.023 0.138 −0.186 0.187 −0.263 0.121 0.023

RANTES −0.065 −0.162 −0.237 0.730 0.148 0.415 −0.085 0.137 0.547 0.271 0.004 0.613 0.225 −0.210 0.041 −0.181 −0.009 −0.020
a Pairwise Pearson correlation coefficients (r values) were measured among cytokines and chemokines using GraphPad Prism software. Statistically significant (P < 0.05) correlation coefficients are designated in bold
text. The inner box designates concordant correlation coefficients that were significant for each pair of inflammatory cytokines and chemokines tested within the group and the outer box also includes the two anti-
inflammatory cytokines with significant correlation coefficients between each pairwise evaluation.
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Figure 4 Relationships between mean cytokine/chemokine rankings and age of rhesus macaques. Animals were ranked from 1 (low) to
101 (high) for each positively correlating cytokine/chemokine (and in reverse for each inversely correlating factor). Mean rank values of the group
of factors exhibiting concordant pairwise correlation coefficients (Panel A) and the remaining cytokines/chemokines (Panel B) were plotted
against the age of each monkey. Pearson correlation coefficients were calculated between the mean rank values and age, and P < 0.05 was
considered statistically significant.
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available for captive nonhuman primates used in bio-
medical studies, as well. Medications and compliance of
their use by elderly humans may affect interpretation of
results from studies on natural biological aging, so stud-
ies using nonhuman primates may control for these
effects. Nonhuman primates also serve as analogous
models of humans with similar and often identical sus-
ceptibility to infectious agents. This provides another
advantage because nonhuman primates can be experi-
mentally challenged with infectious disease agents to val-
idate vaccine or drug efficacy which usually cannot
ethically be accomplished in humans. Further validating
this nonhuman primate model in gerontology are
reports that dietary restriction extending median and
maximum lifespan in a wide range of animals such as
worms, fruit flies, and mice, also extends life-span or
delays onset of age-related chronic diseases in nonhu-
man primates, thus supporting translation to humans
[14-17].
Chronic low-grade inflammation is associated with

aging but questions remain whether inflammation is
causal, coincidental, or consequential to aging, and which
biomarkers of inflammation are relevant to studies on im-
mune senescence [4,6,18,19]. Rhesus macaques are among
the most commonly-used nonhuman primates in biomed-
ical research and provide applicable models that simulate
human physiology and inflammation related to aging
[7,9,12,20]. A goal of this study therefore, was to correlate
immunological parameters from blood samples of
outdoor-housed rhesus macaques to develop a model of
immune-senescence that can be used to study mechan-
isms relating inflammation and aging.
The rhesus macaques used in this study were housed

outdoors and ranged from 2.5 to 24 years of age that is
roughly equivalent to 8 – 77 years of age in humans. A
cross-sectional experimental design was applied to cor-
relate characteristics of blood, and especially cytokine/
chemokine concentrations over age and compare means
between older and younger animals to define significant
characteristics associated with aging. Neonatal and in-
fant animals were excluded so that developmental char-
acteristics would not confound the correlations that
often shift with maturation. In addition, exceptionally
long-lived rhesus macaques aged 25 years or more (ap-
proximately equivalent to 80 years of age in humans)
were not included because frail older animals will have
died and characteristic trends of overall aging were
reported to deviate or change in exceptionally longer-
living older animals [21]. Excluding exceptionally longer-
lived animals also helps distinguish correlates related to
primary changes of aging from secondary changes
affected by diseases of aging. The preponderance of
females to males at an approximate ratio of 3:1 reflects
the population demographics of the outdoor breeding
colonies at the TNPRC and gender differences were only
rarely observed in these studies.
Initial studies on blood chemistry and hematology per-

formed on outdoor-housed animals were similar to
results previously published on indoor-housed rhesus
macaques. An extensive study and update by Smucny
et al. describing characteristics of blood chemistry and
hematology during aging in captive rhesus macaques iden-
tified significant declines in albumin, albumin/globulin,
creatinine, MCV and MCH along with significant
increases in alkaline/phosphatase, BUN, BUN/creatinine,
Hct, Hgb, and RBC numbers [22,23]. In this current
study, significant inverse correlations with age were
reported for albumin, creatinine, and aspartate trans-
aminase (AST). AST was not measured in the Smucny
report and triglycerides were not measured in the study
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reported here. There also was no significant correlation
between erythrocyte numbers and age in the outdoor-
housed rhesus macaques of this study, and although
mean Hct and Hgb levels were lower for females than
males, there were no significant differences in correlation
coefficients between genders over age.
No significant changes in circulating levels of WBC

were reported in the Smucny studies over age whereas
significant inverse correlations over age were observed
for WBC in the studies reported here and as also
reported for humans previously [22-24]. Results reported
on the outdoor-housed macaques also demonstrated
declines in circulating levels of lymphocytes, monocytes,
neutrophils, eosinophils, and basophils over age. The de-
cline in blood lymphocyte levels overall was reflected
primarily from decreasing levels of B cells with age, ra-
ther than T cells or NK cells. Several reports suggested a
consensus that overall T cell levels in blood do not
change with age, as also observed here, and while vari-
able results were reported in humans and mice regard-
ing levels of NK and B cells, most of these studies
described declining functional capabilities of these cells
with aging [25-28].
Overall numbers of circulating CD4+ T cells and CD8+

T cells did not significantly correlate with age in this
group of outdoor-housed macaques. Within the T cell
populations, however, there was a significant direct cor-
relation between CD8+ effector memory T cells and sig-
nificant inverse correlations between CD4+ and CD8+
naïve T cell populations with age. These findings are
similar to reports by others [29-33], including a study on
indoor-housed rhesus macaques reported by Cicin-Sain
and colleagues comparing mean levels between younger
(aged 6–9 years old) and older (aged 18 – 24 years old)
rhesus macaques. In addition, we observed a significant
correlation between increasing levels of DP (CD4+CD8+)
T cells in blood with increasing age, and numbers of DP
effector memory cells statistically significantly correlated
with age while numbers of DP naïve and central memory
cells did not significantly correlate with age.
Identifying biomarkers of aging may be important for

predicting vaccine failure or susceptibility to infectious
disease pathogens, cancer or other diseases that are es-
pecially problematic in the elderly. Chronic low-grade
inflammation is considered a hallmark of aging, and
multiplex cytokine analysis was applied in attempt to
identify a panel or group of systemic cytokines that to-
gether significantly correlate with aging. Such a panel of
cytokines is expected to be more consistent than an indi-
vidual cytokine/chemokine level for selecting individuals
with relatively higher and lower levels of inflamm-aging
into research studies. The ability to select groups of
animals with high and low inflammation status will be
important to test hypotheses and mechanisms relating
cause and effect between inflammation status and aging.
This would also open the door to developing strategies
to restore immune competence or delay onset of immune
senescence.
This study is among the first to apply multiplex cytokine

analyses in rhesus macaques for developing a model of
immune senescence. The outdoor cohort of macaques
exhibited increasing levels of several pro-inflammatory
cytokines with age, including IFNγ, IL1β, IL6, IL12, IL15,
MIF, sCD40L, and TNFα with age, similar to observations
by others [18,34-36]. Of interest was the observation that
while circulating levels of IFNγ, IL6, IL15, MIF, and
CD40L correlated directly with age, t test comparisons be-
tween mean levels in the older group of macaques (aged
18 – 24 years) were not significantly higher than those in
the younger group of macaques (aged 2 – 9 years), in part
due to higher variability exhibited by wider standard devi-
ation values. Such findings may be especially prominent in
studies of outbred populations such as humans and non-
human primates than perhaps would be expected to occur
inbred strains of mice. The higher variation in older
groups might also explain why others reported no signifi-
cant differences between younger humans (less than 45
years of age) and older humans (65 years or more) when
comparing mean circulating levels of cytokines such as
IFNγ, IL6, IL12, or TNFα after multiplex testing and ap-
plying t test analyses [37].
Individual cytokines behave in complex, redundant,

and pleiotropic mechanisms making it difficult to relate
any single pro-inflammatory cytokine to biological aging.
In addition, the increasing standard deviations in mean
concentrations of several circulating pro-inflammatory
cytokines suggested that not all animals exhibited sys-
temic inflamm-aging at the same rate as chronological
aging. A goal of this study was to establish a basis for
selecting animals exhibiting relatively higher and lower
levels of cytokines/chemokines associated with inflamm-
aging so that subsequent studies can be planned to test
how inflammation affects susceptibility and development
of chronic diseases in the elderly. In attempt to define
a group of cytokines/chemokines that reflect immune
senescence, Pearson pairwise correlation analysis was
applied to each of the cytokines assayed in the multi-
plex testing platform. A “concordant” set of cytokines/
chemokines was identified whose levels correlated with
aging and that also exhibited significant pairwise corre-
lations with each of the other factors of this group. These
included the pro-inflammatory cytokines IFNγ, IL1β,
IL6, IL12, IL15, MCP1, MIPα, and TNFα. Of interest
was the observation that two anti-inflammatory cyto-
kines, IL4 and IL1ra, also exhibited significant correla-
tions with each of the other concordant cytokines in this
group. The increased levels of circulating IL4 and IL1ra
levels correlating with age may indicate repair responses
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to inflammation or may reflect dysregulation of cy-
tokines and chemokines purported to occur during
immune-senescence [36,38]. To ascertain that there
were no outlier cytokine concentrations that could con-
found interpretation of these results, mean rankings ra-
ther than cytokine concentrations were analyzed and
found to significantly correlate directly with age whereas
mean rankings of the remaining cytokines as a group did
not correlate with aging. Furthermore, the panel of 10
concordant cytokines exhibited a more robust correl-
ation with age than did a smaller group of number of
cytokines, IFNγ, IL1β, IL6, IL12, and TNFα, that are rou-
tinely associated with inflamm-aging. The use of mean
ranks compressed the dynamic range of analyses to gen-
erate more conservative correlation coefficients, but
demonstrated that the mean rankings of cytokines con-
taining both pro- and anti-inflammatory activities exhib-
ited greater statistical significance than the mean
rankings of the five pro-inflammatory cytokines com-
monly associated with aging. These results provide a
model to compare animals exhibiting relatively higher
versus lower levels of these cytokines and chemokines to
relate chronological aging with biological aging as well
as address impact on susceptibility to chronic diseases
typically associated with aging. Also of interest was the
observation that a few of the younger animals exhibited
relatively higher inflammatory cytokine rankings, and
longitudinal studies could be performed to determine
if these higher cytokine/chemokine-ranking younger ani-
mals were responding to recent infections or are pre-
disposed to biologically age faster than their lower ranking
cohorts.
Risk factors associated with immune senescence have

included chronic infections with cytomegalovirus (CMV)
and obesity. We compared body weights of the older
18 – 24 year-olds with high and low ranking circulating
chemokine/cytokine levels (above or below 50, respect-
ively; Figure 4, panel A) among females (8.99 kg ± 0.46 vs
8.02 kg ± 0.29, respectively) and males (14.35 kg ± 1.46 vs
12.35 ± 1.71, respectively) and found no statistically sig-
nificant differences within each gender. The rhesus maca-
ques used in this study are housed outdoors and are thus
less sedentary than indoor-housed animals which could
explain this observation. In addition, animals over age 24
were not used in this study to preclude changes that may
be associated with chronic diseases of aging rather than
aging itself. Chronic CMV infection is believed to promote
the higher levels of effector-memory T cells that affect the
overall immunological cell population profiles that shift
with aging. Based on a summary of the second CMV and
immunosenescence workshop, many questions remain
about the impact of CMV infection on the aging immune
system and whether treatment to clear CMV, for example,
would delay or reverse immune senescence [39]. Monkeys
are not routinely tested serologically for CMV at the
Tulane National Primate Research Center, but a limited
study of the SPF colony at the Tulane National Primate
Research Center several years ago determined that ap-
proximately 20% of the animals were CMV seronegative
and that these were all among the younger group of
rhesus macaques. All of the animals in the older group
were thus highly likely to be CMV seropositive suggest-
ing that CMV infection alone was not the cause for the
varied inflammation status observed in the older rhesus
macaques. Further studies, however, are needed to cor-
roborate this.
The results of this study confirm and extend the bene-

fits afforded by using nonhuman primates to study
aspects of aging related to systemic pro- and anti-
inflammatory cytokines/chemokines. From the literature,
there seems to be consensus that increased levels of cir-
culating inflammatory cytokines/chemokines are indica-
tors of increased biological aging and risk for frailty in
the elderly [12,18,38,39]. It is unclear, however, whether
age-correlating changes in these cytokine/chemokine
levels represent biomarkers of aging, contribute to
chronic diseases of aging, are produced as a conse-
quence of developing diseases of aging, or combination
of these possibilities. Continued studies using this non-
human primate model will allow us to test whether the
higher ranking animals putatively exhibiting “inflamm-
aging” are more susceptible than the relatively lower
ranking animals to experimental infectious disease or
vaccine failure. Such a model can then be used to dis-
cern between primary changes related to aging from sec-
ondary effects of diseases of aging that would also affect
inflammation.
Conclusions
The results of this study extend the findings by others
demonstrating significant correlations between declining
naïve T cells, increasing effector memory CD8+ T cells,
and increasing levels of pro-inflammatory cytokines/
chemokines in blood and age in outdoor-housed rhe-
sus macaques. New information includes the applica-
tion of multiplex quantification to identify a panel of
chemokines/cytokines that collectively correlate with
aging. Assessing cytokine/chemokine rankings instead
of circulating concentrations further corroborated the
correlation between this panel of factors with aging that
will facilitate selection of animals exhibiting relatively
higher and lower inflammation status. Such a model
will thus help define predictors of aging and address
mechanisms relating inflammation to aging.
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